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1 Introduction

In a series of recent papers [1]–[4] we have investigated the combination of
moving least squares approximation (MLS) (see, e.g., [5]) and approximate
approximation (see, e.g., [8]). This combination (which we call approximate
MLS approximation) yields an efficient and accurate approximation method
for multivariate data that gets by without the solution of linear systems. So
far – even though the fundamental theoretical results by Maz’ya and Schmidt
on approximate approximation [8] include the case of irregularly spaced data
sites – we have focussed our attention and computational experiments on the
easier case of regularly spaced centers. In this paper we present two different
approaches for certain kinds of irregularly spaced data that are designed to
maintain the approximation orders achieved in the regular case.

Specifically, we are interested in approximating large sets of multivariate data
of the form {(xi, f(xi)) : i = 1, . . . , N} ⊂ Rs × R by approximate moving

least squares approximants with radial weights
1

Φj

=
1

φ(‖ · −xj‖)
. As in our

earlier papers we are interested in methods that are

• matrix-free
• and have high approximation order.

It is well known that Shepard’s method

Sf(x) =
N∑

j=1

f(xj)
Φj(x)∑N

k=1 Φk(x)
, x ∈ Rs, (1)

satisfies the first of our criteria, but has approximation order O(h) only. Below
we will summarize our earlier results that established “Shepard-like” methods
with higher approximation order on regularly spaced data. This will lead to
approximants of the general form

Qf(x) =
N∑

j=1

f(xj)Ψj(x), x ∈ Rs. (2)

This kind of expansion – in the general case when the generating functions
Ψj do not satisfy the cardinality (or delta-function) property Ψj(xi) = δij – is
usually referred to as a quasi-interpolant (otherwise as a cardinal interpolant).
By imposing certain restrictions (moment conditions) on the generating func-
tions, the approximation order of these methods can be higher than that of
Shepard’s method (where the only requirement on the Ψj is that they form a
partition of unity). Clearly, quasi-interpolants are very efficient approximation
schemes, as the expansion coefficients are directly given by the data, and the
only computational task is evaluation of the sum (2). Efficiency in accomplish-
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ing this task is a difficult and important problem in its own right. We will not
focus on that problem here. Some basic ideas, however, have been reported in
[4]. Instead we focus on the modification of our earlier methods for the case
of irregularly spaced data.

Throughout the paper we will be using multi-index notation. We call α =
(α1, . . . , αs) ∈ Ns a multi-index with length |α| =

∑s
i=1 αi. The multivari-

ate factorial is defined by α! = α1! · · ·αs!. If x ∈ Rs, then the monomi-
als are xα = xα1

1 · · ·xαs
s . Multivariate differential operators are denoted by

Dα = ∂α1
1 ∂α2

2 · · · ∂αs
s , where ∂i denotes differentiation with respect to the i-th

coordinate direction in Rs.

2 Approximate Moving Least Squares Approximation

2.1 Moving Least Squares Approximation

Moving least-squares methods are at the basis of numerous meshfree approx-
imation methods for the solution of partial differential equations that have
recently been suggested by practitioners as an alternative to the traditional
finite element method (see, e.g., [7] and references therein).

As mentioned in the introduction, we assume to have data {(xi, f(xi))}N
i=1 ⊂

Rs × R with distinct data sites xi and f some (smooth) function, and we
want to approximate them with an expansion of the form (2). Our goal is
to determine the functions Ψj = Ψ(· − xj) in such a way that (2) can be
computed efficiently and has high approximation order. In the MLS literature
the latter is ensured by enforcing polynomial reproduction, i.e.,

N∑
j=1

p(xj)Ψj(x) = p(x), for all p ∈ Πs
d . (3)

Here Πs
d is the space of s-variate polynomials of total degree at most d with

dim Πs
d =

(
s+d
d

)
=: m. The values of the generating functions Ψj(x) at the eval-

uation point x are obtained by solving a constrained quadratic minimization
problem. Thus, (3) is used as a constraint for the weighted norm minimization

1

2

N∑
j=1

Ψ2
j(x)wj(x) → min . (4)

Here the wj are positive (often radial) weight functions whose value increases
with the distance from the center. The connection to Shepard’s method (1)

can be established if we identify wj(x) =
1

Φj(x)
.
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Using Lagrange multipliers λj(x) (which will depend on the evaluation point
x) we can compute the values Ψj(x) by solving a (small) linear system with
Gram matrix G(x) whose entries are given by

Gk,`(x) =
N∑

j=1

pk(xj)p`(xj)Φj(x), k, ` = 1, . . . ,m. (5)

The resulting formula for the generating functions is

Ψj(x) = Φj(x)
m∑

k=1

λk(x)pk(xj), j = 1, . . . , N. (6)

In the case d = 0, i.e., reproduction of constants, the matrix G consists of
only a single element,

∑N
j=1 Φj(x). Therefore λ1(x) = 1/

∑N
j=1 Φj(x), and the

quasi-interpolant (2) together with the generating functions (6) is nothing but
Shepard’s method.

The approximation order O(h) mentioned earlier is with respect to a “mesh-
size” h of the set of data sites. A common such measure is the so-called fill
(or Hausdorff) distance h = sup

x∈Ω
min

1≤j≤N
‖x − xj‖2, where Ω ⊂ Rs is the com-

putational domain under consideration. For general MLS approximation with
reproduction of multivariate polynomials of degree d both Levin [6] and Wend-
land [12] proved approximation order O(hd+1).

If we define the discrete moments

µα =
N∑

j=1

(xj − x)αΨj(x), x ∈ Rs, 0 ≤ |α| ≤ d, (7)

then solution of the Gram system (5) is equivalent to imposing the discrete
moment conditions

µα = δα,0, 0 ≤ |α| ≤ d, (8)

on the generating functions. Thus, following the proofs in [6] and [12], we can
(theoretically) obtain quasi-interpolants of the form

Qhf(x) =
N∑

j=1

f(xj)Ψ

(
x− xj

ρj

)
(9)

with approximation order O(hd+1). Here the generating functions Ψj(x) =
Ψ(x− xj) are assumed to be compactly supported with support size ρj = ch
(c = const.).

Equation (9) is an approximation scheme of the desired form (2). Indeed,
for small values of s and d it is possible to analytically compute the gener-
ating functions by solving the moment equations (8). This was done in [1].
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Since this computation is done as a preprocessing step, this method satisfies
our matrix-free criterion stated in the introduction (but yields only limited
approximation orders due to the limited range of d-values). Satisfying these
moment conditions in arbitrary space dimensions, for higher approximation
orders and for irregularly spaced data is a formidable task. In order to obtain
practical quasi-interpolation schemes of this nature we have previously sug-
gested making use of the concept of approximate approximation. This will lead
to another matrix-free approximation scheme with the additional property of
providing high approximation orders.

2.2 Approximate MLS Approximation for Regularly Spaced Centers

Maz’ya and Schmidt [8] formulated their approximate approximation method
as a quasi-interpolation scheme in which continuous moment conditions of the
form ∫

Rs
yαΨ(y)dy = δα,0, 0 ≤ |α| ≤ d , (10)

are satisfied. Since they show that by satisfying (10) we also approximately
satisfy the discrete moment conditions (8), a connection to MLS approxima-
tion can be established.

On a set of regularly spaced data points xν = hν with spacing h Maz’ya and
Schmidt suggest a quasi-interpolant of the form

Mhf(x) = D−s/2
∑

xν∈B(x)

f(xν)Ψ

(
x− xν√
Dh

)
, (11)

where B(x) is a neighborhood of x. In our numerical experiments we will take
this to be the entire domain. Choosing a smaller ball while maintaining the
approximation order given below in (12) depends on the decay rate of the
generating function, and is closely related to fast evaluation methods.

The key ingredient in the approximation scheme (11) is the parameter D
which scales the generating function Ψ. It can be chosen to make a so-called
saturation error so small that it does not affect numerical computations. The
resulting approximation order estimate is then:

‖f −Mhf‖∞ = O(hd+1 + ε0(Ψ,D)) . (12)

The saturation error ε0 can be interpreted as the discrepancy between the con-
tinuous and discrete moment conditions, and its influence can be controlled
by the choice of the parameter D in (11). Since the analysis of this approx-
imation method is based on Fourier techniques, the Fourier transform of the
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generating function Ψ at the origin gives us an estimate for D for any de-
sired saturation error (see [8] or [2] for more details). The bottom line is that
if D is chosen large enough, then the saturation error will be smaller than
the machine accuracy for any given computer, and therefore not noticeable
in numerical computations. This means, that even though – theoretically –
the quasi-interpolation scheme (11) fails to converge, it does converge for nu-
merical purposes. Moreover, the rate of convergence, d+ 1, can be arbitrarily
high.

For radial generating functions we can use spherical coordinates to transform
the multivariate moment conditions (10) to univariate conditions well known
from the classical theory of orthogonal polynomials. In this special case the
quasi-interpolant will be of the form

Mhf(x) = D−s/2
∑

xν∈B(x)

f(xν)ψ

(
‖x− xν‖2

Dh2

)
, (13)

where Ψ(x) = ψ(‖x‖2). The change from Ψ to ψ in the quasi-interpolant
implies that the error estimate analogous to (12) will now be of the order
O(h2d+2 + ε0(ψ,D)).

Since, for radial functions, the moment conditions (10) are just univariate
orthogonality conditions (for more details see [2]) it is straightforward to com-
pute generating functions in a preprocessing step. A nice set of generating
functions is related to the Gaussians. Table 1 lists these functions for space
dimensions 1, 2, 3, and approximation orders O(h2), O(h4), and O(h6).

Table 1
Generating functions ψ for approximate MLS approximation in Rs.

s O(h2) O(h4) O(h6)

1
1√
π
e−|x|

2 1√
π

(
3
2
− |x|2

)
e−|x|

2 1√
π

(
15
8
− 5

2
|x|2 +

1
2
|x|4
)
e−|x|

2

2
1
π
e−‖x‖

2 1
π

(
2− ‖x‖2

)
e−‖x‖

2 1
π

(
3− 3‖x‖2 +

1
2
‖x‖4

)
e−‖x‖

2

3
1

π3/2
e−‖x‖

2 1
π3/2

(
5
2
− ‖x‖2

)
e−‖x‖

2 1
π3/2

(
35
8
− 7

2
‖x‖2 +

1
2
‖x‖4

)
e−‖x‖

2

A detailed analysis shows that the polynomial terms in Table 1 are given by
generalized Laguerre polynomials with radial arguments [8], i.e., if L

s/2
d is the

generalized Laguerre polynomial of degree d, then

Ψν(x) =
1

πs/2
L

s/2
d

(
‖x− xν‖2

Dh2

)
exp

(
−‖x− xν‖2

Dh2

)
(14)

has approximation order O(h2d+2) in Rs.

In summary, for regularly spaced centers, we can use the functions of Table 1
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(or more generally (14)) in the quasi-interpolation formulation (13) to obtain
an approximation method that satisfies both of our requirements to be matrix-
free and have high (approximate) approximation order.

A method very similar to approximate approximation (called corrected RKPM)
was also discussed in various papers by W.-K. Liu and co-workers (see [7] for
a summary of those ideas). However, their work does not cover irregularly
spaced data sites. The work of Maz’ya and Schmidt does, and we discuss this
in the next section.

2.3 Irregularly Spaced Centers

If the irregularly spaced data sites do not differ too much from a regular
reference grid, i.e., if there exists a smooth and nonsingular reparametrization
γ = (γ1, . . . , γs) from Rs to Rs such that xν = γ(hν), ν ∈ Zs, then the
quasi-interpolant (11) becomes

Nhf(x) = D−s/2
∑

xν∈γ(B(x))

f(xν)Ψ

(
x− xν√

Dh|γ ′(hν)|1/s

)
, (15)

where γ ′(y) is the Jacobian of the reparametrization, i.e.,

γ ′(y) = det


∂γ1

∂y1
(y) . . . ∂γ1

∂ys
(y)

...
...

∂γs

∂y1
(y) . . . ∂γs

∂ys
(y)

 . (16)

Maz’ya and Schmidt show in [8] that the quasi-interpolant (15) satisfies an
error estimate of the same form as (12).

We see that (15) amounts to an individual scaling of the generating functions
depending on the local deviation from a regular lattice.

In general, the map γ will not be known, and so we need to find an approx-
imation Jν to |γ ′(hν)| that maintains the desired approximation order. In
particular, this means that we need (for radial generating functions)

|Jν − |γ ′(hν)|| = O(h2d+2). (17)
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3 Approximating the Jacobian

The two methods presented here for obtaining higher-order approximations to
the Jacobian (16) were essentially already suggested in [8]. We review them
again below, and then present numerical experiments based on these approx-
imations in the following section.

3.1 Finite Difference Approximations

An obvious means of approximating the Jacobian of the reparametrization γ
is to replace the partial derivatives in (16) by finite difference approximations
having the desired accuracy. We recall the following finite difference approx-
imations to the first derivative of a given univariate function g with various
accuracies:

g′(x) =
g(x+ h)− g(x− h)

2h
+O(h2),

g′(x) = 2
g(x+ h)− g(x− h)

3h
− g(x+ 2h)− g(x− 2h)

12h
+O(h4),

g′(x) = 3
g(x+ h)− g(x− h)

4h
− 3

g(x+ 2h)− g(x− 2h)

20h

+
g(x+ 3h)− g(x− 3h)

60h
+O(h6). (18)

These approximations are obtained by differentiating a polynomial of degree
2, 4, and 6, respectively, interpolating g at equally spaced points.

Since we need to approximate the Jacobian γ ′(hν) with entries ∂γj

∂yk
(hν), j, k =

1, . . . , s, and since γ(hν) = xν , the formulas (18) become

∂γj

∂yk

(hν) =
xj,ν+ek

− xj,ν−ek

2h
+O(h2),

∂γj

∂yk

(hν) = 2
xj,ν+ek

− xj,ν−ek

3h
− xj,ν+2ek

− xj,ν−2ek

12h
+O(h4),

∂γj

∂yk

(hν) = 3
xj,ν+ek

− xj,ν−ek

4h
− 3

xj,ν+2ek
− xj,ν−2ek

20h

+
xj,ν+3ek

− xj,ν−3ek

60h
+O(h6). (19)

where xj,ν denotes the j-th component of xν , and ek is the k-th standard unit
vector in Rs.

By replacing all partial derivatives in (16) with finite difference approximations
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of the type (19) we can get an approximation of the Jacobian for the quasi-
interpolant (15) with the desired accuracy.

In the Section 4.1 we will present a strategy for identifying the points xν±iek
,

i = 1, 2, 3, and k = 1, . . . , s.

3.2 Approximate Areas

Another way of adjusting the scale of the generating function centered at xν in
our quasi-interpolant is to base the correction factor on some measure of area
(or volume in higher space dimensions) defined by points in the neighborhood
of xν . However, using simple areas will only provide an approximation of
order O(h2) useful for working with the basic Gaussian generating functions
(see below). If we want to take advantage of the more accurate generating
functions listed in Table 1 then we need to devise higher-order approximations
to the Jacobian of the reparametrization as specified in (17).

To this end we let M = 2d + 2, and consider a cube Q containing the origin
(in the regular reference lattice) with area (volume)

|Q| =
∫

Q
dx.

Then γ(Q) denotes the transformed cube which has area

|γ(Q)| =
∫

γ(Q)
dx =

∫
Q
|γ ′(y)|dy.

Moreover, if Qν denotes a shifted and scaled copy of Q, i.e., Qν = hν + hQ,
then

|γ(Qν)| =
∫

γ(Qν)
dx =

∫
Qν

|γ ′(y)|dy = hs
∫

Q
|γ ′(y)|dy. (20)

Performing a Taylor expansion of the Jacobian coupled with integration over
the cube Q yields

∫
Q
|γ ′(y)|dy =

M−1∑
|α|=0

Dα(|γ ′(hν)|)
α!

h|α|
∫

Q
yαdy +O(hM)

or

∫
Q
|γ ′(y)|dy = |Q||γ ′(hν)|+

M−1∑
|α|=1

Dα(|γ ′(hν)|)
α!

h|α|
∫

Q
yαdy +O(hM). (21)
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Using (20) we see that the left-hand side∫
Q
|γ ′(y)|dy =

|γ(Qν)|
hs

. (22)

If we choose the cube Q1 = [−1, 1]s, then∫
Q1

ydy = 0, (23)

and (21), (22) and (23) imply that we can approximate |γ ′(hν)| by

Jν =
|γ(Q1

ν)|
hs|Q1|

=
|γ(Q1

ν)|
(2h)s

(24)

with accuracy O(h2).

In order to obtain anO(h4) approximation to the Jacobian we need to consider
the next term in (21). Using the cube Q1 we get∫

Q1
|γ ′(y)|dy = 2s|γ ′(hν)|+ 2sh2

6

s∑
j=1

D2ej(|γ ′(hν)|) +O(h4) (25)

since, for |α| = 2,

∫
Q1

yej+ekdy =

0, j 6= k ∈ {1, . . . , s},
2s

3
, j = k,

and, for |α| = 3, ∫
Q1

yαdy = 0.

In order to remove the terms of order O(h2) in (25) we need to use another
expansion of this type coming from a different cube Q2.

For example, we can simply choose Q2 as a scaled version of Q1, e.g., Q2 =
[−2, 2]s. Then we get∫

Q2
|γ ′(y)|dy = 4s|γ ′(hν)|+ 4s+1h2

6

s∑
j=1

D2ej(|γ ′(hν)|) +O(h4) (26)

which – by subtracting (26) from 2s+2 times (25) – leads to the following
approximation to the Jacobian valid in any space dimension:

Jν =
4|γ(Q1

ν)| − |γ(Q2
ν)|/2s

3(2h)s
+O(h4). (27)

For approximation in R2 this reads

Jν =
|γ(Q1

ν)| − |γ(Q2
ν)|/16

3h2
+O(h4). (28)
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Even higher-order approximations can be achieved by using several different
cubes, and forming linear combinations that eliminate the desired terms in
(21).

If we restrict ourselves to the case s = 2 and take Q3 with vertices at ±ej,
j = 1, 2, then we have∫

Q3
|γ ′(y)|dy = 2|γ ′(hν)|+ h2

6

(
D(2,0)(|γ ′(hν)|) +D(0,2)(|γ ′(hν)|)

)
+O(h4).

(29)
Therefore, for s = 2 we can subtract (25) from 4 times (29) to get an O(h4)
approximation of the Jacobian of the form

Jν =
|γ(Q3

ν)| − |γ(Q1
ν)|/4

h2
. (30)

However, choosing the vertices in this way does not generalize naturally to
higher dimensions.

We now present and implement a strategy for identifying the vertices of the
cubes from the set of irregularly spaced centers.

4 Numerical Experiments

4.1 Implementation of Approximate Jacobians

The methods for approximating the Jacobian described in the previous sec-
tion are based on the assumption that the locations of the irregularly spaced
data sites are obtained by a smooth nonsingular transformation from a regular
reference grid. Therefore we can use neighboring information in the reference
grid to select the corresponding irregularly spaced points needed for the ap-
proximate formulas.

In the numerical experiments below we have used the O(h2) finite difference
approximation listed in (19) as well as the O(h4) area approximation (30).
Other approximations have also been implemented and tested.

If s = 2 then the basic symmetric finite difference formula withO(h2) accuracy
employs the direct neighbors of the center hν to the left, right, top and bottom.
Therefore, in the set of irregularly spaced points we select the four nearest
neighbors of xν = γ(hν) and sort them according to their relative positions.
Then the approximate Jacobian is computed based on these points.

Similarly, for the O(h4) approximation we require the eight nearest neighbors
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of xν . They are then divided into two groups. The four nearest neighbors form-
ing the cube Q3

ν (corresponding to a diamond-like shape in the reference grid),
and the other four points yielding the vertices of the cube Q1

ν (corresponding
to a square shape in the reference grid).

We use the ANN (approximate nearest neighbor) library [9] to compute the
required lists of nearest neighbors for each center xν .

4.2 Equally Spaced Centers

We use the following mollified version g of “Franke’s function” f given by

f(x, y) =
3

4

[
exp

(
−(9x− 2)2

4
− (9y − 2)2

4

)
+ exp

(
−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(
−(9x− 7)2

4
− (9y − 3)2

)
− 1

5
exp

(
−(9x− 4)2 − (9y − 7)2

)
,

g(x, y) = 15 exp

(
−1

1− 4(x− 1/2)2

)
exp

(
−1

1− 4(y − 1/2)2

)
f(x, y) ,

where (x, y) ∈ [0, 1] × [0, 1]. In order for the quasi-interpolation schemes to
perform well it is necessary that the data be mollified around the boundary.

Since the approximation orders for approximate approximation are maximum
norm errors (cf. (12)) we use the corresponding discrete errors to document
our numerical experiments. The `∞ errors reported in Tables 2–5 are always
computed on one more refinement of the finest mesh, i.e., a mesh G of 257×257
equally spaced points in [0, 1]× [0, 1]. Specifically,

`∞−error = max
xj∈G

|g(xj)−Mhg(xj)| ,

where Mhg (or Nhg) is the approximation to g obtained by the various ap-
proximation schemes. For the examples reported below using irregular data
sites the error is also computed on the fine regular mesh G.

In Table 2 we list – as benchmarks – the results of computations on a se-
ries of regular grids. The generating functions are the Gaussian, “linear” and
“quadratic” Laguerre generating functions listed in the second row of Table 1.
The “rate” columns indicate the numerical approximation order achieved by
each method. In all three cases we chose the parameter D = 3 in (13).

The convergence behavior shown in Table 1 is typical for approximate approx-
imation. On a coarse grid the smoothing effect of selecting a fixed parameter
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Table 2
Approximate MLS approximation with regular centers in R2.

Mesh Gaussian “linear” Laguerre “quadratic” Laguerre

`∞-error rate `∞-error rate `∞-error rate

3× 3 1.023 1.004 9.887e-01

5× 5 8.348e-01 0.294 6.808e-01 0.562 5.603e-01 0.819

9× 9 5.903e-01 0.500 3.651e-01 0.899 2.287e-01 1.293

17× 17 2.691e-01 1.133 7.440e-01 2.295 3.955e-02 2.532

33× 33 8.206e-02 1.714 1.714e-02 2.118 6.943e-03 2.510

65× 65 2.162e-02 1.924 2.624e-03 2.708 7.809e-04 3.152

129× 129 5.479e-03 1.981 2.743e-04 3.258 6.353e-05 3.620

D for all mesh sizes is clearly visible, and the corresponding approximation
order is low. By refining the grid, the smoothing effect is less dramatic, and
eventually the predicted approximation order is reached. Finally, if we would
be able to refine the mesh even further so that the errors approach the sat-
uration error ε0 (cf. (12)) associated with our choice of D, then convergence
would stall. Note that for the “quadratic” Laguerre generating function we do
not achieve the predicted order O(h6). Most likely this is due to smoothing
effects induced by the choice of D, and the convergence order would show up
in later iterations on a finer mesh.

4.3 Irregularly Spaced Centers

We use two different sets of irregularly distributed points. The “smooth” point
set is obtained from a regular grid via the mapping

x= (19ξ + η2)/20

y= (ξ2 + 49η2)/50,

where ξ and η are points on a regular grid in [0, 1] × [0, 1]. This point set
satisfies the hypotheses of the theory outlined in Section 3. The second set of
points are the so-called Halton points. They are defined as follows. Consider
the p-adic expansion of the nonnegative integer n, i.e.,

n =
∑
j

njp
j
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with some prime base p. If we define a function H by

H(n, p) =
∑
j

njp
−j−1,

then the two-dimensional Halton points are given by

xi+1 = [H(i, px), H(i, py)], i = 0, 1, . . . , N − 1,

where px and py are two different prime numbers. Our Halton points where
generated with px = 2 and py = 3. The Halton points are randomly distributed
in the unit square, and no smooth mapping from a regular grid exists. More
details on Halton points can be found, e.g., in [10].

The two different types of data sets are displayed in Figure 1 for N = 289.
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Fig. 1. 289 “smooth” points (left) and 289 Halton points (right) in [0, 1]× [0, 1].

We present three different sets of experiments. First, in Table 3 we perform
the standard quasi-interpolation scheme (13), i.e., without using any scale
adjustment for the Gaussian generating functions. As expected, on both sets
of irregularly spaced data, the method fails to converge properly. For this
experiment we used D = 5.

Next, we test the performance of one of the finite difference approximations
for the Jacobian. In Table 4 we used the O(h2) approximation listed in (19).
The approximation at each point xν is computed based on the four nearest
neighbors of xν as explained earlier. Again, we use D = 5 and Gaussian
generating functions.

Figure 2 shows the approximation obtained on the two different sets of 1089
points. The graph of the approximation computed over the “smooth” points
is very close to that of the mollified “Franke function” g. In general, the
approximations computed over the Halton points are “rougher” than those
computed over the points obtained by a smooth mapping from a regular mesh.
This is in accordance with the assumptions made in Section 2.3.

Finally, in Table 5 we present the results of computations based on “linear” La-

guerre generating functions ψ(x) =
1

π

(
2− ‖x‖2

)
e−‖x‖

2

with an added O(h4)

14



Table 3
Approximate MLS approximation with Gaussians using “smooth” points and Hal-
ton points as centers in R2; no correction added.

Mesh “smooth” points Halton points

`∞-error rate `∞-error rate

9 1.009 9.382e-01

25 9.051e-01 0.156 8.071e-01 0.217

81 6.866e-01 0.399 5.680e-01 0.507

289 3.533e-01 0.958 2.533e-01 1.165

1089 1.734e-01 1.027 9.082e-02 1.480

4225 1.982e-01 −0.193 8.755e-02 0.053

16641 2.194e-01 −0.147 8.219e-02 0.091
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Fig. 2. Quasi-interpolant to mollified “Franke function” g using 1089 “smooth”
points (left) and 1089 Halton points (right) in [0, 1]× [0, 1].

correction based on the area approximation (30) of the Jacobian. Again, we
compare what happens for “smooth” points and for Halton points. This time
we begin the experiments with a set of 25 points since the method used to
approximate the Jacobian uses the 8 nearest neighbors of each center. Also,
in this series of experiments we let D = 10. The results are similar to the
previous experiment. However, the rate of convergence is not as good. In fact,
saturation seems to play a role during the later stages of the experiment.
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Table 4
Approximate MLS approximation with Gaussians using “smooth” points and Hal-
ton as centers in R2; O(h2) finite difference correction applied.

Mesh “smooth” points Halton points

`∞-error rate `∞-error rate

9 1.011 9.557e-01

25 9.259e-01 0.126 8.758e-01 0.126

81 6.965e-01 0.411 7.078e-01 0.307

289 3.753e-01 0.892 5.809e-01 0.285

1089 1.302e-01 1.527 6.683e-01 −0.202

4225 4.320e-02 1.592 6.079e-01 0.137

16641 1.216e-02 1.828 6.699e-01 −0.140

Table 5
Approximate MLS approximation with “linear” Laguerre generating functions using
“smooth” points and Halton as centers in R2; O(h4) area correction applied.

Mesh “smooth” points Halton points

`∞-error rate `∞-error rate

25 9.010e-01 8.577e-01

81 6.187e-01 0.542 6.561e-01 0.387

289 2.510e-01 1.301 2.909e-01 1.174

1089 9.183e-02 1.451 3.855e-01 −0.407

4225 7.057e-02 0.380 2.719e-01 0.504

16641 5.189e-02 0.444 3.459e-01 −0.347

5 Concluding Remarks

As the experiments of Table 3 show, it is necessary to apply a local cor-
rection factor to the scale of the generating functions when applying quasi-
interpolation formulas on irregularly spaced points. However, as the experi-
ments with the truly scattered Halton points show, the method used in this
paper to adjust the scale relies on the fact that the centers are a smooth
reparametrization of a regular grid, i.e., the method does not work in a rea-
sonable way for the Halton points. Even for the points obtained with a smooth
mapping the scheme for irregularly spaced points does not compare very fa-
vorably with the one for regularly spaced data (cf. Tables 2, 4 and 5).
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Overall, for regular data we recommend the use of “linear” Laguerre func-
tions, whereas for irregularly spaced data it does – at least so far – not seem
to be beneficial to use those functions instead of regular Gaussians. Further
work is needed to obtain a robust adjustment mechanism for the scale of the
generating functions for high-order matrix-free quasi-interpolants such as (2)
or (13).
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