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As we saw earlier, compactly supported functions Φ that are truly
strictly conditionally positive definite of order m > 0 do not exist.
The compact support automatically ensures that Φ is strictly positive
definite.

Another observation was that compactly supported radial functions
can be strictly positive definite on Rs only for a fixed maximal s-value.
It is not possible for a function to be strictly positive definite and radial
on Rs for all s and also have a compact support.

Therefore we focus our attention on the characterization and
construction of functions that are compactly supported, strictly positive
definite and radial on Rs for some fixed s.
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According to Bochner’s theorem and generalizations thereof, a
function is strictly positive definite and radial on Rs if its s-variate
Fourier transform is non-negative.
From Appendix B:

Theorem
The Fourier transform of the radial function Φ = ϕ(‖ · ‖) is given by
another radial function

Φ̂(x) = Fsϕ(‖x‖) =
1√
‖x‖s−2

∫ ∞
0

ϕ(t)t
s
2 J s−2

2
(t‖x‖)dt ,

where Jν is the Bessel function of the first kind of order ν.

Remark
A proof of this theorem can be found in [Wendland (2005a)].
This integral transform is also referred to as Fourier-Bessel
transform or Hankel transform.
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Remark
The Hankel inversion theorem [Sneddon (1972)] ensures that the
Fourier transform for radial functions is its own inverse, i.e., for
radial functions ϕ we have

Fs [Fsϕ] = ϕ.

We used this earlier when we turned the Matérn functions “upside
down” to get the generalized inverse multiquadrics.
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Operators for Radial Functions and Dimension Walks

A certain integral operator and its inverse differential operator
were defined in [Schaback and Wu (1996)].

In that paper an entire calculus was developed for how these
operators act on radial functions.

According to [Gneiting (2002)], these operators can be traced
back to [Matheron (1965)] who called the integral operator montée
and the differential operator descente motivated by an application
related to mining.

In the following we define these operators and show how they
facilitate the construction of compactly supported radial functions.
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Operators for Radial Functions and Dimension Walks

Definition

1 Let ϕ be such that t 7→ tϕ(t) ∈ L1[0,∞). Then we define the
integral operator I via

(Iϕ)(r) =

∫ ∞
r

tϕ(t)dt , r ≥ 0.

2 For even ϕ ∈ C2(R) we define the differential operator D via

(Dϕ)(r) = −1
r
ϕ′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even
functions using even extensions.

Remark
Note that the integral operator I differs from the operator I introduced
earlier by a factor t in the integrand.

fasshauer@iit.edu MATH 590 – Chapter 11 8

http://math.iit.edu/~fass


Operators for Radial Functions and Dimension Walks

The most important properties of the montée and descente operators
are (see, e.g., [Schaback and Wu (1996)] or [Wendland (1995)]):

Theorem

(1) Both D and I preserve compact support, i.e., if ϕ has compact
support, then so do Dϕ and Iϕ.

(2) If ϕ ∈ C(R) and t 7→ tφ(t) ∈ L1[0,∞), then DIϕ = ϕ.
(3) If ϕ ∈ C2(R) (ϕ 6≡ 1) is even and ϕ′ ∈ L1[0,∞), then IDϕ = ϕ.
(4) If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).
(5) If ϕ ∈ C2(R) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then
Fs(ϕ) = Fs+2(Dϕ).
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Operators for Radial Functions and Dimension Walks

The operators I and D allow us to express s-variate Fourier transforms
as (s − 2)- or (s + 2)-variate Fourier transforms, respectively.
In particular, a direct consequence of the above properties and the
characterization of strictly positive definite radial functions is

Theorem

(1) Suppose ϕ ∈ C(R). If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then ϕ
is strictly positive definite and radial on Rs if and only if Iϕ is
strictly positive definite and radial on Rs−2.

(2) If ϕ ∈ C2(R) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then ϕ is strictly
positive definite and radial on Rs if and only if Dϕ is strictly
positive definite and radial on Rs+2.
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Operators for Radial Functions and Dimension Walks

Remark
This allows us to construct new strictly positive definite radial
functions from given ones by a “dimension-walk” technique that
steps through multivariate Euclidean space in even increments.

The examples presented in the following sections illustrate this
technique.
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Wendland’s Compactly Supported Functions

Probably the most popular family of compactly supported radial
functions presently in use was constructed in [Wendland (1995)].

Wendland starts with the truncated power function

ϕ`(r) = (1− r)`+.

which we know to be strictly positive definite and radial on Rs for
integer ` ≥ b s

2c+ 1.

Then he walks through dimensions by repeatedly applying the integral
operator I.
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Wendland’s Compactly Supported Functions

Definition

With ϕ`(r) = (1− r)`+ we define

ϕs,k = Ikϕbs/2c+k+1.

Remark
Note the use of a single subscript for the truncated power function,
and double subscript for the Wendland functions.
It turns out that the functions ϕs,k are all supported on [0,1] and
have a polynomial representation there.

fasshauer@iit.edu MATH 590 – Chapter 11 14

http://math.iit.edu/~fass


Wendland’s Compactly Supported Functions

More precisely,

Theorem

The functions ϕs,k are strictly positive definite and radial on Rs and are
of the form

ϕs,k (r) =

{
ps,k (r), r ∈ [0,1],
0, r > 1,

with a univariate polynomial ps,k of degree bs/2c+ 3k + 1.

Moreover, ϕs,k ∈ C2k (R) are unique up to a constant factor, and the
polynomial degree is minimal for given space dimension s and
smoothness 2k.
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Wendland’s Compactly Supported Functions

Remark
This theorem states that any other compactly supported
polynomial function that globally C2k and strictly positive definite
and radial on Rs will not have a smaller polynomial degree.
Our other examples below (Wu’s functions, Gneiting’s functions)
illustrate this fact.
The strict positive definiteness of Wendland’s functions ϕs,k
starting with non-integer values of ` was established in
[Gneiting (1999)].

Note, however, that then the functions are no longer guaranteed to
be polynomials on their support.
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Wendland’s Compactly Supported Functions

Wendland gave recursive formulas for the functions ϕs,k for all s, k .

We instead list the explicit formulas of [Fasshauer (1999a)].

Theorem

The functions ϕs,k , k = 0,1,2,3, have the form

ϕs,0(r) = (1− r)`+,

ϕs,1(r)
.

= (1− r)`+1
+ [(`+ 1)r + 1] ,

ϕs,2(r)
.

= (1− r)`+2
+

[
(`2 + 4`+ 3)r2 + (3`+ 6)r + 3

]
,

ϕs,3(r)
.

= (1− r)`+3
+

[
(`3 + 9`2 + 23`+ 15)r3 + (6`2 + 36`+ 45)r2

+(15`+ 45)r + 15] ,

where ` = bs/2c+ k + 1, and the symbol .= denotes equality up to a
multiplicative positive constant.
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Wendland’s Compactly Supported Functions

Proof.
The case k = 0 follows directly from the definition.
Application of the definition for the case k = 1 yields

ϕs,1(r) = (Iϕ`)(r) =

∫ ∞
r

tϕ`(t)dt

=

∫ ∞
r

t(1− t)`+dt

=

∫ 1

r
t(1− t)`dt

=
1

(`+ 1)(`+ 2)
(1− r)`+1 [(`+ 1)r + 1] ,

where the compact support of ϕ` reduces the improper integral to a
definite integral which can be evaluated using integration by parts.
The other two cases are obtained similarly by repeated application of
I.
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Wendland’s Compactly Supported Functions

Example

k ϕ3,k (r) smoothness

0 (1− r)2
+ C0

1 (1− r)4
+ (4r + 1) C2

2 (1− r)6
+

(
35r2 + 18r + 3

)
C4

3 (1− r)8
+

(
32r3 + 25r2 + 8r + 1

)
C6

Table: Wendland’s compactly supported radial functions ϕs,k for various
choices of k and s = 3.

fasshauer@iit.edu MATH 590 – Chapter 11 19

http://math.iit.edu/~fass


Wendland’s Compactly Supported Functions

Example (cont.)
All functions in the table are strictly positive definite and radial on
Rs for s ≤ 3.
Their degree of smoothness 2k is specified.
The functions were determined using the direct formulas from the
above theorem and thus match the definition only up to a positive
constant factor.
Note that (x)`+ is to be interpreted as ((x)+)`, i.e., we first apply
the cutoff function, and then the power.
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Wendland’s Compactly Supported Functions

Figure: Plot of Wendland’s functions ϕs,k for various choices of k and s = 3.
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Wendland’s Compactly Supported Functions

For the MATLAB implementation in the next chapter it is better to
express the compactly supported functions in a shifted form.
We list the appropriate functions ϕ̃s,k = ϕs,k (1− ·) so that
ϕ̃s,k (1− εr) = ϕs,k (εr).

k ϕ3,k (r) ϕ̃3,k (r)

0 (1− r)2
+ r2

+

1 (1− r)4
+ (4r + 1) r4

+ (5− 4r)

2 (1− r)6
+

(
35r2 + 18r + 3

)
r6
+

(
56− 88r + 35r2

)
3 (1− r)8

+

(
32r3 + 25r2 + 8r + 1

)
r8
+

(
66− 154r + 121r2 − 32r3

)
Table: Wendland’s compactly supported radial functions ϕs,k and
ϕ̃s,k = ϕs,k (1− ·) for various choices of k and s = 3.
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Wu’s Compactly Supported Functions

In [Wu (1995b)] we find another way to construct strictly positive
definite radial functions with compact support.
Wu starts with the function

ψ(r) = (1− r2)`+, ` ∈ N,

which in itself is not positive definite (see the discussion at the end of
Chapter 5).
However, Wu then uses convolution to construct another function that
is strictly positive definite and radial on R, i.e.,

ψ`(r) = (ψ ∗ ψ)(2r)

=

∫ ∞
−∞

(1− t2)`+(1− (2r − t)2)`+dt

=

∫ 1

−1
(1− t2)`(1− (2r − t)2)`+dt .

Remark
This function is strictly positive definite since its Fourier transform is
essentially the square of the Fourier transform of ψ and therefore
non-negative.
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Wu’s Compactly Supported Functions

Just like the Wendland functions, the Wu function ψ` is a
polynomial on its support.

The degree of the polynomial is 4`+ 1, and ψ` ∈ C2`(R).

Now, a family of strictly positive definite radial functions is
constructed by a dimension walk using the differential operator D.

Definition

With ψ`(r) = ((1− ·2)`+ ∗ (1− ·2)`+)(2r) we define

ψk ,` = Dkψ`.
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Wu’s Compactly Supported Functions

The functions ψk ,`

are strictly positive definite and radial on Rs for s ≤ 2k + 1,

are polynomials of degree 4`− 2k + 1 on their support

and in C2(`−k) in the interior of the support.

On the boundary the smoothness increases to C2`−k .
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Wu’s Compactly Supported Functions

Example

For ` = 3 we can compute the four functions

ψk ,3(r) = Dkψ3(r) = Dk ((1− ·2)3
+ ∗ (1− ·2)3

+)(2r), k = 0,1,2,3.

They are listed on the next slide along with their smoothness.

The maximal space dimension s for which these functions are strictly
positive definite and radial on Rs is also listed.

Just as with the Wendland functions, the functions in Table 12 match
the definition only up to a positive multiplicative constant.
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Wu’s Compactly Supported Functions

Example (cont.)

k ψk,3(r) smoothness s

0 (1− r)7
+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) C6 1

1 (1− r)6
+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) C4 3

2 (1− r)5
+(8 + 40r + 48r2 + 25r3 + 5r4) C2 5

3 (1− r)4
+(16 + 29r + 20r2 + 5r3) C0 7

Table: Wu’s compactly supported radial functions ψk,` for various choices of k
and ` = 3.
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Wu’s Compactly Supported Functions

Figure: Plot of Wu’s functions ψk,` for various choices of k and ` = 3.
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Wu’s Compactly Supported Functions

Example (cont.)

Again, we also list the functions ψ̃k ,` = ψk ,`(1− ·) used in our MATLAB

implementation in Chapter 12.

k ψ̃k,3(r) smoothness s

0 r7
+(429− 1287r + 1573r2 − 1001r3 + 351r4 − 65r5 + 5r6) C6 1

1 r6
+(231− 561r + 528r2 − 242r3 + 55r4 − 5r5) C4 3

2 r5
+(126− 231r + 153r2 − 45r3 + 5r4) C2 5

3 r4
+(70− 84r + 35r2 − 5r3) C0 7

Table: Shifted version ψ̃k,` of Wu’s compactly supported radial functions ψk,`
for various choices of k and ` = 3.
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Wu’s Compactly Supported Functions

Remark
As predicted by the theorem about the Wendland functions , for a prescribed space
dimension s and smoothness the polynomial degree of
Wendland’s functions is lower than that of Wu’s functions.

For example, both Wendland’s function ϕ3,2 and Wu’s function ψ1,3
are C4 smooth and strictly positive definite and radial on R3.
However, the polynomial degree of Wendland’s function is 8,
whereas that of Wu’s function is 11.
Another comparable function is Gneiting’s oscillatory function σ2
(see below), which is a C4 polynomial of degree 9 that is strictly
positive definite and radial on R3.

While the two families of strictly positive definite compactly
supported functions discussed above are both constructed via
dimension walk, Wendland uses integration (and thus obtains a
family of increasingly smoother functions), whereas Wu needs to
start with a function of sufficient smoothness, and then obtains
successively less smooth functions (via differentiation).
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Oscillatory Compactly Supported Functions

Other strictly positive definite compactly supported radial functions
have been proposed by Gneiting (see, e.g., [Gneiting (2002)]).

He showed that a family of oscillatory compactly supported functions
can be constructed using the so-called turning bands operator of
[Matheron (1973)].

Starting with a function ϕs that is strictly positive definite and radial on
Rs for s ≥ 3 the turning bands operator produces

ϕs−2(r) = ϕs(r) +
rϕ′s(r)

s − 2
(1)

which is strictly positive definite and radial on Rs−2.
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Oscillatory Compactly Supported Functions

Example

One such family of functions is generated if we start with the Wendland
functions

ϕs+2,1(r) = (1− r)`+1
+ [(`+ 1)r + 1]

(` non-integer allowed).

Application of the turning bands operator results in the functions

τs,`(r) = (1− r)`+

(
1 + `r − (`+ 1)(`+ 2 + s)

s
r2
)
,

which are strictly positive definite and radial on Rs provided ` ≥ s+5
2

(see [Gneiting (2002)]).

fasshauer@iit.edu MATH 590 – Chapter 11 34

http://math.iit.edu/~fass


Oscillatory Compactly Supported Functions

Example (cont.)

` τ2,`(r) smoothness

7/2 (1− r)
7/2
+

(
1 + 7

2 r − 135
8 r2

)
C2

5 (1− r)5
+

(
1 + 5r − 27r2

)
C2

15/2 (1− r)
15/2
+

(
1 + 15

2 r − 391
8 r2

)
C2

12 (1− r)12
+

(
1 + 12r − 104r2

)
C2

Table: Gneiting’s compactly supported radial functions τs,` for various choices
of ` and s = 2.

Remark

All functions are in C2(R).
If we want smoother functions, then we need to start with a
smoother Wendland family as described in the next example.
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Oscillatory Compactly Supported Functions

Figure: First family of oscillatory functions by Gneiting.
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Oscillatory Compactly Supported Functions

Example

We get a set of oscillatory functions that are strictly positive definite
and radial on R3 by applying the turning bands operator to the
Wendland functions ϕ5,k which are strictly positive definite and radial
on R5 for different choices of k .
Then the resulting functions σk will have the same degree of
smoothness 2k as the original functions and they will be strictly
positive definite and radial on R3.

k σk (r) smoothness

1 (1− r)4
+

(
1 + 4r − 15r2

)
C2

2 (1− r)6
+

(
3 + 18r + 3r2 − 192r3

)
C4

3 (1− r)8
+

(
15 + 120r + 210r2 − 840r3 − 3465r4

)
C6

Table: Oscillatory compactly supported functions that are strictly positive
definite and radial on R3 parametrized by smoothness.
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Oscillatory Compactly Supported Functions

Figure: Second family of oscillatory functions by Gneiting.
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Oscillatory Compactly Supported Functions

Remark
Gneiting also suggests the construction of strictly positive definite
radial functions by taking the product of the (appropriately scaled)
Poisson functions Ωs (see Chapter 4) with a certain compactly
supported non-negative function (see [Gneiting (2002)] for more
details).

Since the product of strictly positive definite functions is strictly positive
definite (see Chapter 3) the resulting function will be strictly positive
definite.

This will also yield oscillatory compactly supported functions.
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Other Compactly Supported Radial Basis Functions

There are many other ways in which one can construct compactly
supported functions that are strictly positive definite and radial on Rs.
In [Schaback (1995a)] several such possibilities are described.

Euclid’s hat functions are constructed in analogy to B-splines.

Example

It is well known that the univariate function

β(r) = (1− |r |)+

is a second-order B-spline with knots at −1,0,1, and it is obtained as
the convolution of the characteristic function of the interval [−1

2 ,
1
2 ] with

itself.

Euclid’s hat functions are now obtained by convolving the characteristic
function of the s-dimensional Euclidean unit ball with itself.
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Other Compactly Supported Radial Basis Functions

Euclid’s hat
The resulting functions can be written for r ∈ [0,1] in the form

ϕ2k+1(2r) =

{
2πϕ2k−1(2r)−r(1−r2)k

2k+1 k = 1,2,3, . . . ,
2(1− r) k = 0,

for odd space dimensions s = 2k + 1, and as

ϕ2k+2(2r) =

{
2πϕ2k (2r)−r

√
(1−r2)(1−r2)k

2k+2 k = 1,2,3, . . . ,
2(arccos r − r

√
1− r2) k = 0,

for even space dimensions s = 2k .

Note that these functions are defined to be zero outside the interval
[0,2].
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Other Compactly Supported Radial Basis Functions

Euclid’s hat (cont.)
In the table below we have employed a substitution 2r → r and a
normalization factor such that the functions all have a value of one at
the origin.

s ϕs(r) smoothness

1 1− r
2 C0

2 1
2π

(
4 arccos

( r
2

)
− r
√

4− r2
)

C0

3 1− 1
32π

(
(4 + 16π)r − r3

)
C0

4 2
π arccos

( r
2

)
− 1

32π

√
4− r2

(
20r + r3

)
C0

5 1− 1
64π2

(
(12 + 8π + 32π2)r − (3 + 2π)r3

)
C0

Table: Euclid’s hat functions (defined for 0 ≤ r ≤ 2) for different values of s.
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Other Compactly Supported Radial Basis Functions

Figure: Euclid’s hat functions.

fasshauer@iit.edu MATH 590 – Chapter 11 44

http://math.iit.edu/~fass


Other Compactly Supported Radial Basis Functions

Remark
Another construction described in [Schaback (1995a)] is the
radialization of the s-fold tensor product of univariate B-splines of
even order 2m with uniform knots.
These functions do not seem to have a simple representation that
lends itself to numerical computations.
As can be seen from its radialized Fourier transform, the
radialized B-spline itself is not strictly positive definite and radial
on any Rs with s > 1.
For s = 1 only the B-splines of even order are strictly positive
definite (see, e.g., [Schölkopf and Smola (2002)]).
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Other Compactly Supported Radial Basis Functions

The last family of compactly supported strictly positive definite radial
functions we would like to mention is due to [Buhmann (1998)].

Buhmann’s functions contain a logarithmic term in addition to a
polynomial.

His functions have the general form

ϕ(r) =

∫ ∞
0

(
1− r2

t

)λ
+

tα(1− tδ)ρ+dt .

Here 0 < δ ≤ 1
2 , ρ ≥ 1, and in order to obtain functions that are strictly

positive definite and radial on Rs for s ≤ 3 the constraints for the
remaining parameters are λ ≥ 0, and −1 < α ≤ λ−1

2 .
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Other Compactly Supported Radial Basis Functions

Example

Let α = δ = 1
2 , ρ = 1 and λ = 2 (see [Buhmann (2000)]):

ϕ(r)
.

= 12r4 log r − 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1.

This function is in C2(R) and strictly positive definite and radial on Rs

for s ≤ 3.
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Other Compactly Supported Radial Basis Functions

Remark
In [Buhmann (2000)] it is stated that his construction
encompasses both Wendland’s and Wu’s functions.
An even more general theorem that shows that integration of a
positive function f ∈ L1[0,∞) against a strictly positive definite
kernel K results in a strictly positive definite function can be found
in [Wendland (2005a)] (see also Chapter 4).

More specifically,

ϕ(r) =

∫ ∞

0
K (t , r)f (t)dt

is strictly positive definite.
Buhmann’s construction then corresponds to choosing

f (t) = tα(1− tδ)ρ+ and K (t , r) =
(

1− r2

t

)λ
+

.
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