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Vibrating Membranes

We now derive a generalization of the wave equation to two
dimensions (see Chapter 4.5 of [Haberman]).

Consider a stretched elastic
membrane of unspecified shape
(e.g., circular or rectangular) with
equilibrium position in the
xy -plane.
Every point (x , y ,0) of the
membrane has a displacement
z = u(x , y , t) at time t .
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Vibrating Membranes

As for the vibrating string we assume:
There are only small vertical displacements.
The membrane is perfectly flexible.

In addition we make the simplifying assumptions:
The tensile force is constant.
There are no external forces acting on the membrane.
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Vibrating Membranes

As a consequence of these assumptions the tensile force FT will be
tangential to the membrane acting along the entire boundary of the
membrane, i.e.,

FT = T0

(
t̂ × n̂

)
,

where
T0 is the constant tension,

t̂ is the unit tangent vector along the edge of the
membrane,

n̂ is the unit outer surface normal to the membrane.

As with the string, we need only the vertical component of the tensile
force, i.e.,

Tv = FT · k̂ = T0

(
t̂ × n̂

)
· k̂ ,

where k̂ is the standard unit vector (0,0,1).
Note that FT , t̂ , n̂ and Tv are all functions of x , y and t .
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Vibrating Membranes

As with the vibrating string we use Newton’s law, F = m a, with
mass m = ρ0 dA, where ρ0 is the density, and dA is the surface
area element, and
acceleration a = ∂2u

∂t2 .

The balance of forces equation now reads∫∫
R

ρ0
∂2u
∂t2 dA =

∫
∂R

T0

(
t̂ × n̂

)
· k̂ ds (1)

with arc length element ds.
In order to obtain a PDE we need to convert the boundary integral on
the right-hand side of (1) to a surface integral.
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Vibrating Membranes

Stokes’ theorem1 tells us∫
∂R

F · t̂ ds =

∫∫
R

(∇× F) · n̂ dA,

i.e., the boundary integral of the tangential component of the vector
field F is equal to the surface integral of the normal component of the
curl of F.

However, our boundary integral∫
∂R

T0

(
t̂ × n̂

)
· k̂ ds

does not match the form needed for Stokes, so we first need to work
on this integral.

1Recall that Stokes’ theorem is a variant of Green’s theorem (2D divergence
theorem) applicable to non-planar regions
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Vibrating Membranes

The vector triple product

(a × b) · c = (b × c) · a = (c × a) · b

allows us to rewrite∫
∂R

T0

(
t̂ × n̂

)
· k̂ ds =

∫
∂R

T0

(
n̂ × k̂

)
· t̂ ds

which now has the tangential component of a vector field as its
integrand, so that it matches Stokes.
Therefore, using Stokes’ theorem, we have∫

∂R

T0

(
n̂ × k̂

)
· t̂ ds =

∫∫
R

T0

[
∇×

(
n̂ × k̂

)]
· n̂ dA, (2)

and we can now return to (1).

fasshauer@iit.edu MATH 461 – Chapter 7 9

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Membranes

The vector triple product

(a × b) · c = (b × c) · a = (c × a) · b

allows us to rewrite∫
∂R

T0

(
t̂ × n̂

)
· k̂ ds =

∫
∂R

T0

(
n̂ × k̂

)
· t̂ ds

which now has the tangential component of a vector field as its
integrand, so that it matches Stokes.

Therefore, using Stokes’ theorem, we have∫
∂R

T0

(
n̂ × k̂

)
· t̂ ds =

∫∫
R

T0

[
∇×

(
n̂ × k̂

)]
· n̂ dA, (2)

and we can now return to (1).

fasshauer@iit.edu MATH 461 – Chapter 7 9

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Membranes

The vector triple product

(a × b) · c = (b × c) · a = (c × a) · b

allows us to rewrite∫
∂R

T0

(
t̂ × n̂

)
· k̂ ds =

∫
∂R

T0

(
n̂ × k̂

)
· t̂ ds

which now has the tangential component of a vector field as its
integrand, so that it matches Stokes.
Therefore, using Stokes’ theorem, we have∫

∂R

T0

(
n̂ × k̂

)
· t̂ ds =

∫∫
R

T0

[
∇×

(
n̂ × k̂

)]
· n̂ dA, (2)

and we can now return to (1).

fasshauer@iit.edu MATH 461 – Chapter 7 9

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Membranes

Replacing the right-hand side of (1) by the right-hand side of (2) we
have ∫∫

R

ρ0
∂2u
∂t2 dA =

∫∫
R

T0

[
∇×

(
n̂ × k̂

)]
· n̂ dA.

Since this identity holds for any region R we must have

ρ0
∂2u
∂t2 = T0

[
∇×

(
n̂ × k̂

)]
· n̂. (3)

The problem with this equation is that there is no displacement u on
the right-hand side.
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Vibrating Membranes

Where does u enter the right-hand side T0

[
∇×

(
n̂ × k̂

)]
· n̂?

Through the normal vector n̂.

Treating the membrane z = u(x , y) as a level surface

f (x , y , z) = 0 ⇐⇒ u(x , y)− z = 0

we know that the normal vector is parallel to the gradient of f , i.e.,

n̂ =
−∂u
∂x î − ∂u

∂y ĵ + k̂√(
∂u
∂x

)2
+
(
∂u
∂y

)2
+ 1
≈ −∂u

∂x
î − ∂u

∂y
ĵ + k̂

if we have small displacements, i.e.,
(
∂u
∂x

)2 and
(
∂u
∂y

)2
are small.

fasshauer@iit.edu MATH 461 – Chapter 7 11

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Membranes

Where does u enter the right-hand side T0

[
∇×

(
n̂ × k̂

)]
· n̂?

Through the normal vector n̂.

Treating the membrane z = u(x , y) as a level surface

f (x , y , z) = 0 ⇐⇒ u(x , y)− z = 0

we know that the normal vector is parallel to the gradient of f , i.e.,

n̂ =
−∂u
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ĵ + k̂

if we have small displacements, i.e.,
(
∂u
∂x

)2 and
(
∂u
∂y

)2
are small.

fasshauer@iit.edu MATH 461 – Chapter 7 11

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Membranes

Where does u enter the right-hand side T0

[
∇×

(
n̂ × k̂

)]
· n̂?

Through the normal vector n̂.

Treating the membrane z = u(x , y) as a level surface

f (x , y , z) = 0 ⇐⇒ u(x , y)− z = 0

we know that the normal vector is parallel to the gradient of f , i.e.,

n̂ =
−∂u
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Vibrating Membranes

Then

n̂ × k̂ =

∣∣∣∣∣∣
î ĵ k̂
−∂u
∂x −∂u

∂y 1
0 0 1

∣∣∣∣∣∣ = −∂u
∂y

î +
∂u
∂x

ĵ

and (since ∂u
∂x and ∂u

∂y don’t depend on z)

∇×
(

n̂ × k̂
)

=

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−∂u
∂y

∂u
∂x 0

∣∣∣∣∣∣∣ =

(
∂2u
∂x2 +

∂2u
∂y2

)
k̂ .
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Vibrating Membranes

Finally, using the previous result and since we are using
n̂ = −∂u

∂x î − ∂u
∂y ĵ + k̂ , which implies k̂ · n̂ = 1, we have

[
∇×

(
n̂ × k̂

)]
· n̂ =

(
∂2u
∂x2 +

∂2u
∂y2

)
k̂ · n̂ =

∂2u
∂x2 +

∂2u
∂y2 ,

and so we get from (3)

ρ0
∂2u
∂t2 = T0

(
∂2u
∂x2 +

∂2u
∂y2

)
or

∂2u
∂t2 (x , y , t) = c2∇2u(x , y , t),

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2 is the (spatial) Laplacian and c2 = T0
ρ0

.

This is the standard form of the wave equation in 2D.
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Vibrating Membranes

Remark

The steady-state problem, i.e., ∂
2u
∂t2 = 0, leads to

∇2u(x , y) = 0 (Laplace’s equation).

If an external force is added to the steady-state problem, then we get

∇2u(x , y) = f (x , y) (Poisson’s equation).
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PDEs in Space

So far we used separation of variables only for PDEs with two
independent variables, such as u(x , t), u(x , y), or u(r , θ).

Now we will consider PDEs in space, i.e., we will have to deal with
functions of three variables such as u(x , y , t), u(x , y , z), or
u(r , θ, t),
or even functions of four variables such as u(x , y , z, t) or
u(ρ, ϕ, θ, t).

Corresponding PDEs might be
a 2D or 3D heat equation (in Cartesian or in polar coordinates)

∂u
∂t

= k∇2u,

a 2D or 3D wave equation (in Cartesian or in polar coordinates)

∂2u
∂t2 = c2∇2u,
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Separation of the Time Variable

We will now look at two examples and see how to apply separation of
variables in these different cases:

vibrations of an arbitrarily shaped membrane, i.e., a 2D wave
equation,

heat conduction in an arbitrary solid, i.e., a 3D heat equation,

We will see that we can separate time from space and then obtain
one of our usual ODEs for the time problem,
but a PDE eigenvalue problem for space.
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Separation of the Time Variable

Vibrations of an arbitrarily shaped membrane

Let’s consider the PDE

∂2u
∂t2 (x , y , t) = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
(x , y , t),

a 2D wave equation, with initial conditions

u(x , y ,0) = f (x , y) (initial displacement)
∂u
∂t

(x , y ,0) = g(x , y) (initial velocity)

We cannot specify any boundary conditions at this point since the
shape of the domain is not given.
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Separation of the Time Variable

For separation of variables we start with the Ansatz

u(x , y , t) = T (t)ϕ(x , y)

so that the partial derivatives are

∂2u
∂t2 (x , y , t) = T ′′(t)ϕ(x , y),

∂2u
∂x2 (x , y , t) = T (t)∂

2ϕ
∂x2 (x , y), ∂2u

∂y2 (x , y , t) = T (t)∂
2ϕ
∂y2 (x , y),

and the wave equation turns into

T ′′(t)ϕ(x , y) = c2T (t)
(
∂2ϕ

∂x2 (x , y) +
∂2ϕ

∂y2 (x , y)

)
or

1
c2

T ′′(t)
T (t)

=

∂2ϕ
∂x2 (x , y) + ∂2ϕ

∂y2 (x , y)

ϕ(x , y)
= −λ.
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Separation of the Time Variable

As a result we have
one well-known ODE for time:

T ′′(t) = −λc2T (t),

which has oscillatory solutions for λ > 0, and

one PDE for the spatial part:

∂2ϕ

∂x2 (x , y) +
∂2ϕ

∂y2 (x , y) = −λϕ(x , y)

⇐⇒ ∇2ϕ(x , y) = −λϕ(x , y).

This PDE eigenvalue equation is known as the Helmholtz
equation.
We will look at more detailed examples later.
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Separation of the Time Variable

Remark
In order to attempt a solution of the Helmholtz equation (with the help
of separation of variables) we will need to have a “nice” region and
appropriate boundary conditions.

If the region is rectangular, then we can separate

ϕ(x , y) = X (x)Y (y).

If the region is circular, then

ϕ(x , y) = ϕ̃(r , θ) = R(r)Θ(θ)

will work.
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Separation of the Time Variable

Heat conduction in an arbitrary solid

Now we consider the PDE

∂u
∂t

(x , y , z, t) = k
(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(x , y , z, t),

a 3D heat equation, with initial temperature

u(x , y , z,0) = f (x , y , z).

Again, we cannot specify any boundary conditions at this point since
the shape of the domain is not given.
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Separation of the Time Variable

For separation of variables we start with the Ansatz

u(x , y , z, t) = T (t)ϕ(x , y , z)

and have the partial derivatives

∂u
∂t

(x , y , z, t) = T ′(t)ϕ(x , y , z),(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(x , y , z, t) = T (t)

(
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2

)
(x , y , z)

so that the heat equation turns into

T ′(t)ϕ(x , y , z) = kT (t)
(
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2

)
(x , y , z)

or
1
k

T ′(t)
T (t)

=
∇2ϕ(x , y , z)

ϕ(x , y , z)
= −λ.
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Separation of the Time Variable

For this example we get
the well-known time ODE

T ′(t) = −λkT (t),

with solution for T (t) = e−λkt , and

once again the Helmholtz PDE for the spatial part:(
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2

)
(x , y , z) = −λϕ(x , y , z)

⇐⇒ ∇2ϕ(x , y , z) = −λϕ(x , y , z).
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Rectangular Membrane

Let’s assume the membrane has dimensions 0 ≤ x ≤ L and
0 ≤ y ≤ H.
The wave equation is given by

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
and we will consider Dirichlet boundary conditions

u(0, y , t) = u(L, y , t) = u(x ,0, t) = u(x ,H, t) = 0

along with the standard initial conditions

u(x , y ,0) = f (x , y)

∂u
∂t

(x , y ,0) = g(x , y).
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Rectangular Membrane

Separation of variables with Ansatz u(x , y , t) = T (t)ϕ(x , y) results in
the ODE

T ′′(t) = −λc2T (t)

and the Helmholtz PDE eigenvalue problem

∂2ϕ

∂x2 (x , y) +
∂2ϕ

∂y2 (x , y) = −λϕ(x , y)

with boundary conditions

ϕ(0, y) = ϕ(L, y) = ϕ(x ,0) = ϕ(x ,H) = 0.

We can now investigate the solution of this eigenvalue problem by
another separation of variables Ansatz (chances are good this will
work since the PDE and BCs are linear and homogeneous).
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Rectangular Membrane

We let
ϕ(x , y) = X (x)Y (y)

so that ∂
2ϕ
∂x2 (x , y) = X ′′(x)Y (y) and ∂2ϕ

∂y2 (x , y) = X (x)Y ′′(y).

Then the Helmholtz equation becomes

X ′′(x)Y (y) + X (x)Y ′′(y) = −λX (x)Y (y)

or
X ′′(x)

X (x)
= −λ− Y ′′(y)

Y (y)
= −µ

with a new separation constant µ.
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Rectangular Membrane

As a result, we now have two Sturm–Liouville eigenvalue problems:
The well-known problem

X ′′(x) = −µX (x)

with BCs X (0) = X (L) = 0

which yields eigenvalues and eigenfunctions

µn =
(nπ

L

)2
, Xn(x) = sin

nπx
L
, n = 1,2,3, . . .

and the set of slightly modified problems (each one corresponding
to one of the solutions of the first problem)

Y ′′(y) = −(λ− µn)Y (y), n = 1,2,3 . . .
with BCs Y (0) = Y (H) = 0.

Here we get the eigenvalues and eigenfunctions

λn,m − µn =
(mπ

H

)2
, Yn,m(y) = sin

mπy
H

, n,m = 1,2,3, . . .
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Rectangular Membrane

Inserting the eigenvalues µn =
(nπ

L

)2 into the expression for the
eigenvalues λn,m of the second problem we get

λn,m =
(mπ

H

)2
+ µn =

(mπ
H

)2
+
(nπ

L

)2
, n,m = 1,2,3, . . .

Since we assumed ϕ(x , y) = X (x)Y (y) we have the combined
eigenfunctions

ϕn,m(x , y) = Xn(x)Yn,m(y) = sin
nπx

L
sin

mπy
H

, n,m = 1,2,3, . . .

Using the eigenvalues λn,m in the time ODE T ′′(t) = −λc2T (t) we
have (note that all eigenvalues are positive)

Tn,m(t) = c1 cos
√
λn,mct + c2 sin

√
λn,mct .
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Rectangular Membrane

By the principle of superposition we get the general solution of the
vibrating membrane problem (before using the ICs) as

u(x , y , t) =
∞∑

m=1

∞∑
n=1

[
an,m cos

√
λn,mct + bn,m sin

√
λn,mct

]
sin

nπx
L

sin
mπy

H
.

This is a double Fourier sine series, and we find the coefficients using
the initial conditions:

u(x , y ,0) =
∞∑

m=1

∞∑
n=1

an,m sin
nπx

L
sin

mπy
H

!
= f (x , y).

Here we can interpret, holding x fixed,
∞∑

n=1

an,m sin
nπx

L

as the Fourier sine coefficient of the function y 7→ f (x , y), i.e.,
∞∑

n=1

an,m sin
nπx

L
=

2
H

∫ H

0
f (x , y) sin

mπy
H

dy , m = 1,2,3, . . . (4)
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Rectangular Membrane

Now we note that the right-hand side of (4) is itself some function of x ,
i.e.,

F (x) =
2
H

∫ H

0
f (x , y) sin

mπy
H

dy , (5)

and so (4) can be interpreted as

F (x) =
∞∑

n=1

an,m sin
nπx

L
, m = 1,2,3, . . . ,

which gives us an,m as Fourier sine coefficients of F , i.e.,

an,m =
2
L

∫ L

0
F (x) sin

nπx
L

dx

(5)
=

2
L

∫ L

0

[
2
H

∫ H

0
f (x , y) sin

mπy
H

dy

]
sin

nπx
L

dx
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Rectangular Membrane

We therefore have

an,m =
2
L

2
H

∫ L

0

[∫ H

0
f (x , y) sin

mπy
H

dy

]
sin

nπx
L

dx , n,m = 1,2,3, . . .

To find the coefficients bn,m we need the t-partial of the general
solution u:

∂u
∂t

(x , y , t) =
∞∑

m=1

∞∑
n=1

[
−
√
λn,mcan,m sin

√
λn,mct +

√
λn,mcbn,m cos

√
λn,mct

]
× sin

nπx
L

sin
mπy

H

so that

∂u
∂t

(x , y ,0) =
∞∑

m=1

∞∑
n=1

√
λn,mcbn,m sin

nπx
L

sin
mπy

H
!

= g(x , y).
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Rectangular Membrane
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Rectangular Membrane

Following the same procedure as before, we first get the Fourier sine
coefficients of the function y 7→ g(x , y) (i.e., x is held fixed) as

∞∑
n=1

√
λn,mcbn,m sin

nπx
L

=
2
H

∫ H

0
g(x , y) sin

mπy
H

dy , m = 1,2,3, . . .

= G(x),

and then
√
λn,mcbn,m as the Fourier sine coefficients of G, i.e.,

bn,m =
1

c
√
λn,m

2
L

2
H

∫ L

0

[∫ H

0
g(x , y) sin

mπy
H

dy

]
sin

nπx
L

dx ,

n,m = 1,2,3, . . .
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Rectangular Membrane

Remark
There are other (equivalent) ways in which we could have approached
this problem.

For example, the order in which we find the eigenfunctions Xn and
Yn,m does not matter. However, if we reversed the order, we would
be enumerating them as Yn and Xn,m.

We also could have made a 3-way separation of variables right off
the bat. This is described in Appendix 7.3 in [Haberman].
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The Eigenvalue Problem∇2ϕ + λϕ = 0

Outline
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The Eigenvalue Problem∇2ϕ + λϕ = 0

In analogy to the 1D Sturm–Liouville equation ϕ′′(x) + λϕ(x) = 0 we
now investigate the Helmholtz equation

∇2ϕ+ λϕ = 0

subject to a boundary condition of the form

aϕ+ b∇ϕ · n̂ = 0,

where a and b are both functions of x and y , the coordinates of points
on the boundary, and ϕ · n̂ is the normal derivative of ϕ along the
boundary.

More generally, we could even consider a Sturm–Liouville-type
equation of the form

∇ · (p∇ϕ) + qϕ+ λσϕ = 0

with coefficient functions p, q and σ.
The Helmholtz equation corresponds to p ≡ 1, q ≡ 0 and σ ≡ 1.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

Properties of the 2D Helmholtz equation

Analytic solutions of the Helmholtz eigenvalue problem are known
only for simple geometries such as rectangles, triangles or circles.

For more complicated domains one needs to use numerical
methods such as finite elements.
However, one can still prove qualitative results.

We illustrate these properties with the help of

∇2ϕ+ λϕ = 0, 0 < x < L, 0 < y < H
ϕ = 0 on the boundary of [0,L]× [0,H]

with its eigenvalues and eigenfunctions

λn,m =
(nπ

L

)2
+
(mπ

H

)2
, n,m = 1,2,3, . . .

ϕn,m(x , y) = sin
nπx

L
sin

mπy
H

.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

Similar to regular 1D Sturm–Liouville problems we have:

1 All eigenvalues are real, i.e., we do not need to search for complex
eigenvalues.

This is obvious for the example problem since

λn,m =
(nπ

L

)2
+
(mπ

H

)2
, n,m = 1,2,3, . . .

2 There are infinitely many eigenvalues that can be ordered (but no
longer strictly).
For the example problem

λ1,1 =
(π

L

)2
+
( π

H

)2

is the smallest one. However, the rest of the ordering depends on
L and H.
There is no largest eigenvalue.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

3 There may be more than one eigenfunction associated with any
eigenvalue.

This suggests that there can be different modes (eigenfunctions) that
vibrate with the same frequency (eigenvalue).

This property is different from the 1D case.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

Example
Choose L = 2H in our example problem. Then

λn,m =
n2π2

4H2 +
m2π2

H2 =
π2

4H2

(
n2 + 4m2)

and
ϕn,m(x , y) = sin

nπx
2H

sin
mπy

H
.

Now, note that

λ4,1 =
π2

4H2

(
42 + 4 · 12) =

5π2

H2 =
π2

4H2

(
22 + 4 · 22) = λ2,2

so that

ϕ4,1(x , y) = sin
4πx
2H

sin
πy
H

= sin
2πx
H

sin
πy
H

ϕ2,2(x , y) = sin
2πx
2H

sin
2πy
H

= sin
πx
H

sin
2πy
H

and we have two different eigenfunctions associated with the same (double,
i.e., not strictly ordered) eigenvalue.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

Remark
Eigenvalues can also have multiplicities higher than two.

Again, for the example L = 2H we have, e.g.,

λ2,8 = λ8,7 = λ14,4 = λ16,1 =
65π2

H2 .
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The Eigenvalue Problem∇2ϕ + λϕ = 0

4 The set of eigenfunctions {ϕn,m}∞n,m=1 is complete, i.e., any
piecewise smooth function f can be represented by a generalized
Fourier series

f (x , y) ∼
∞∑

m=1

∞∑
n=1

an,mϕn,m(x , y)

In our example

f (x , y) ∼
∞∑

m=1

∞∑
n=1

an,m sin
nπx

L
sin

mπy
H

.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

5 Eigenfunctions associated with different eigenvalues are
orthogonal on the region R with respect to the weight σ ≡ 1, i.e.,∫∫

R

ϕλ1(x , y)ϕλ2(x , y) dA = 0 if λ1 6= λ2.

In our example, provided λn1,m1 6= λn2,m2 ,∫ L

0

∫ H

0

(
sin

n1πx
L

sin
m1πy

H

)(
sin

n2πx
L

sin
m2πy

H

)
dydx = 0

and the Fourier coefficients are

an,m =

∫ L
0

∫ H
0 f (x , y) sin nπx

L sin mπy
H dydx∫ L

0

∫ H
0 sin2 nπx

L sin2 mπy
H dydx

.
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The Eigenvalue Problem∇2ϕ + λϕ = 0

6 The Rayleigh quotient can be formed and used as in 1D. In
particular,

λ =

−
∫
∂R

ϕ∇ϕ · n̂ds +

∫∫
R

|∇ϕ|2 dA

∫∫
R

ϕ2dA
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The Eigenvalue Problem∇2ϕ + λϕ = 0

7 The convergence properties are as in Chapter 5.10, i.e., the mean
square error

∫∫
R

[
f (x , y)−

∑
λ

aλϕλ(x , y)

]2

dxdy ,

where the number of terms in the sum
∑

λ is finite, is minimized
for αλ = aλ, the generalized Fourier coefficients of f .
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Green’s Formula and Self-Adjointness

In 1D we had Green’s formula∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx =

[
p(x)

(
u(x)v ′(x)− v(x)u′(x)

)]b
a ,

where Lu = d
dx (pu′) + qu stood for the Sturm–Liouville operator.

The self-adjointness of L was characterized by∫ b

a
[u(x)(Lv)(x)− v(x)(Lu)(x)] dx = 0.

Now we will state analogous results for the 2D operator Lu = ∇2u.
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Green’s Formula and Self-Adjointness

In this case, Green’s formula is obtained with the help of Green’s
theorem and the identity (analogous to the product rule)

∇ · (u∇v) = ∇u · ∇v + u∇2v (6)

∫∫
R

[
u(∇2v)− v(∇2u)

]
dA

(6)
=

∫∫
R

∇ · [u∇v − v∇u] dA

Green’sThm
=

∫
∂R

(u∇v − v∇u) · n̂ds

Here we have the vector field F = u∇v − v∇u, so that
∇ · [u∇v − v∇u] = divF and the boundary integral has the normal
component of F as its integrand.

Remark
Green’s formula is known in Calc III as Green’s second identity.
If the BCs are such that u and v (or ∇u · n̂ and ∇v · n̂) are zero on
the boundary, ∂R, then L = ∇2 will be self-adjoint.
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Vibrating Circular Membranes, Bessel Functions

To investigate the vibrations of a circular drum we need to use the
wave equation in polar coordinates, i.e.,

∂2u
∂t2 = c2∇2u

= c2
[

1
r
∂

∂r

(
r
∂u
∂r

)
+

1
r2
∂2u
∂θ2

]
, 0 < r < a, −π < θ < π.

The only boundary condition we have is

u(a, θ, t) = 0, −π < θ < π, t > 0,

and the initial conditions are the standard ones

u(r , θ, 0) = f (r , θ)

∂u
∂t

(r , θ, 0) = g(r , θ).
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Vibrating Circular Membranes, Bessel Functions

We begin with a separation of variables Ansatz (just like in the section
for the rectangular drum) u(r , θ, t) = ϕ(r , θ)T (t) so that we get the
ODE

T ′′(t) = −λc2T (t)

and the Helmholtz PDE (in polar coordinates)

∇2ϕ+ λϕ = 0
with BC ϕ(a, θ) = 0.

We can write this PDE eigenvalue problem as

1
r
∂

∂r

(
r
∂ϕ

∂r

)
+

1
r2
∂2ϕ

∂θ2 + λϕ = 0

ϕ(a, θ) = 0.
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Vibrating Circular Membranes, Bessel Functions

Now we again apply separation of variables for this polar coordinate
problem (as we did in Chapter 2) using the Ansatz ϕ(r , θ) = R(r)Θ(θ).

This gives us

1
r
∂

∂r

(
r
∂

∂r
[R(r)Θ(θ)]

)
+

1
r2

∂2

∂θ2 [R(r)Θ(θ)] + λ [R(r)Θ(θ)] = 0

or
Θ(θ)

r
d
dr
(
rR′(r)

)
+

R(r)

r2 Θ′′(θ) + λR(r)Θ(θ) = 0.

Multiplication by r2

R(r)Θ(θ) and a little rearranging gives

r
R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)
= µ,

which results in two additional SL ODE eigenvalue problems.

fasshauer@iit.edu MATH 461 – Chapter 7 54

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Now we again apply separation of variables for this polar coordinate
problem (as we did in Chapter 2) using the Ansatz ϕ(r , θ) = R(r)Θ(θ).
This gives us

1
r
∂

∂r

(
r
∂

∂r
[R(r)Θ(θ)]

)
+

1
r2

∂2

∂θ2 [R(r)Θ(θ)] + λ [R(r)Θ(θ)] = 0

or
Θ(θ)

r
d
dr
(
rR′(r)

)
+

R(r)

r2 Θ′′(θ) + λR(r)Θ(θ) = 0.

Multiplication by r2

R(r)Θ(θ) and a little rearranging gives

r
R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)
= µ,

which results in two additional SL ODE eigenvalue problems.

fasshauer@iit.edu MATH 461 – Chapter 7 54

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Now we again apply separation of variables for this polar coordinate
problem (as we did in Chapter 2) using the Ansatz ϕ(r , θ) = R(r)Θ(θ).
This gives us

1
r
∂

∂r

(
r
∂

∂r
[R(r)Θ(θ)]

)
+

1
r2

∂2

∂θ2 [R(r)Θ(θ)] + λ [R(r)Θ(θ)] = 0

or
Θ(θ)

r
d
dr
(
rR′(r)

)
+

R(r)

r2 Θ′′(θ) + λR(r)Θ(θ) = 0.

Multiplication by r2

R(r)Θ(θ) and a little rearranging gives

r
R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)
= µ,

which results in two additional SL ODE eigenvalue problems.

fasshauer@iit.edu MATH 461 – Chapter 7 54

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Now we again apply separation of variables for this polar coordinate
problem (as we did in Chapter 2) using the Ansatz ϕ(r , θ) = R(r)Θ(θ).
This gives us

1
r
∂

∂r

(
r
∂

∂r
[R(r)Θ(θ)]

)
+

1
r2

∂2

∂θ2 [R(r)Θ(θ)] + λ [R(r)Θ(θ)] = 0

or
Θ(θ)

r
d
dr
(
rR′(r)

)
+

R(r)

r2 Θ′′(θ) + λR(r)Θ(θ) = 0.

Multiplication by r2

R(r)Θ(θ) and a little rearranging gives

r
R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)

= µ,

which results in two additional SL ODE eigenvalue problems.

fasshauer@iit.edu MATH 461 – Chapter 7 54

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Now we again apply separation of variables for this polar coordinate
problem (as we did in Chapter 2) using the Ansatz ϕ(r , θ) = R(r)Θ(θ).
This gives us

1
r
∂

∂r

(
r
∂

∂r
[R(r)Θ(θ)]

)
+

1
r2

∂2

∂θ2 [R(r)Θ(θ)] + λ [R(r)Θ(θ)] = 0

or
Θ(θ)

r
d
dr
(
rR′(r)

)
+

R(r)

r2 Θ′′(θ) + λR(r)Θ(θ) = 0.

Multiplication by r2

R(r)Θ(θ) and a little rearranging gives

r
R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)
= µ,

which results in two additional SL ODE eigenvalue problems.

fasshauer@iit.edu MATH 461 – Chapter 7 54

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Altogether, we now have three ODEs:
the time-dependent problem

T ′′(t) = −λc2T (t)

and from
r

R(r)

d
dr
(
rR′(r)

)
+ λr2 = −Θ′′(θ)

Θ(θ)
= µ

we get the two singular Sturm–Liouville problems

Θ′′(θ) = −µΘ(θ)

with periodic BCs Θ(−π) = Θ(π), Θ′(−π) = Θ′(π)

r
d
dr

(rR′(r)) +
(
λr2 − µ

)
R(r) = 0

with singularity BCs R(a) = 0, |R(0)| <∞
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Vibrating Circular Membranes, Bessel Functions

The first problem
Θ′′(θ) = −µΘ(θ)

with periodic BCs has eigenvalues and eigenfunctions

µn = n2, Θn(θ) = c1 cos nθ + c2 sin nθ, n = 0,1,2, . . .

The second problem is more easily investigated if we first re-write it.
Using the product rule we have

0 = r
d
dr
(
rR′(r)

)
+
(
λr2 − µ

)
R(r) = r2R′′(r) + rR′(r) +

(
λr2 − µ

)
R(r).

One can use the Rayleigh quotient to show that λ must be positive,
and so we can do a variable substitution z =

√
λr .

Note that, by the chain rule, we then have

dR
dr

=
dR
dz

dz
dr

=
dR
dz

√
λ

d2R
dr2 =

d
dr

dR
dr

=
d
dr

[
dR
dz

√
λ

]
=

d2R
dz2 λ
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Therefore, if we apply the substitution z =
√
λr and the eigenvalues

µn = n2 to the equation

r2R′′(r) + rR′(r) +
(
λr2 − µn

)
R(r) = 0, n = 0,1,2, . . .

we get

z2

λ
λR′′(z) +

z√
λ

√
λR′(z) +

(
λ

z2

λ
− n2

)
R(z) = 0

⇐⇒ z2R′′(z) + zR′(z) +
(

z2 − n2
)

R(z) = 0, n = 0,1,2, . . .

This is known as Bessel’s equation.

We will now solve Bessel’s equation (you may have already seen this
in MATH 252).
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Solution of Bessel’s equation

We assume the solution is given as a power series of the form

R(z) = zc
∞∑

j=0

ajz j =
∞∑

j=0

ajz j+c (7)

Assuming this series is differentiable, we compute the required
derivatives

R′(z) =
∞∑

j=0

(j + c)ajz j+c−1

R′′(z) =
∞∑

j=0

(j + c)(j + c − 1)ajz j+c−2
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Inserting the power series Ansatz (7) and its derivatives into Bessel’s
equation

z2R′′(z) + zR′(z) +
(

z2 − n2
)

R(z) = 0

we get

z2
∞∑
j=0

(j + c)(j + c − 1)ajz j+c−2 + z
∞∑
j=0

(j + c)ajz j+c−1 +
(

z2 − n2
) ∞∑

j=0

ajz j+c = 0

or
∞∑
j=0

(j + c)(j + c − 1)ajz j+c +
∞∑
j=0

(j + c)ajz j+c +
(

z2 − n2
) ∞∑

j=0

ajz j+c = 0

⇐⇒
∞∑
j=0

[
(j + c)(j + c − 1) + (j + c)− n2

]
ajz j+c +

∞∑
j=0

ajz j+c+2 = 0

⇐⇒
∞∑
j=0

[
(j + c)2 − n2

]
ajz j+c +

∞∑
j=2

aj−2z j+c = 0
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Now we can divide out the factor zc and get

∞∑
j=0

[
(j + c)2 − n2

]
ajz j +

∞∑
j=2

aj−2z j = 0

or

(
c2 − n2)a0 +

[
(1 + c)2 − n2]a1z +

∞∑
j=2

{[
(j + c)2 − n2]aj + aj−2

}
z j = 0.

In order to determine the unknown coefficients aj in the power series
of R we now compare coefficients of like powers of z.
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From above(
c2 − n2)a0 +

[
(1 + c)2 − n2]a1z +

∞∑
j=2

{[
(j + c)2 − n2]aj + aj−2

}
z j = 0.

Coefficient of z0: (
c2 − n2

)
a0 = 0

=⇒ a0 = 0 or c = ±n

Since we don’t want a0 = 0 (see the explanation below) we have
c = ±n.
Coefficient of z1: [

(1 + c)2 − n2
]

a1 = 0

=⇒
[
(1± n)2 − n2]a1 = 0

=⇒ (1± 2n)a1 = 0 =⇒ a1 = 0

since we can’t choose n (and n is a nonnegative integer).
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For the following discussion we assume c = +n.
Coefficient of z j , j > 1: [

(j + n)2 − n2
]

aj + aj−2 = 0

⇐⇒
(

j2 + 2nj
)

aj + aj−2 = 0

⇐⇒ aj =
−1

j2 + 2nj
aj−2, j = 2,3,4 . . .

This is a recurrence relation which requires two initial values: a0 and
a1.
The recurrence relation

couples all coefficients with even subscript (starting with a0),
and all those with odd subscripts (starting with a1). Since a1 = 0
we immediately know that

a2k+1 = 0, k = 1,2,3, . . .

Now we can see why we didn’t want to allow a0 = 0 above. This would
have resulted in a trivial solution R(z) = 0.

fasshauer@iit.edu MATH 461 – Chapter 7 62

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

For the following discussion we assume c = +n.
Coefficient of z j , j > 1: [

(j + n)2 − n2
]

aj + aj−2 = 0

⇐⇒
(

j2 + 2nj
)

aj + aj−2 = 0

⇐⇒ aj =
−1

j2 + 2nj
aj−2, j = 2,3,4 . . .

This is a recurrence relation which requires two initial values: a0 and
a1.
The recurrence relation

couples all coefficients with even subscript (starting with a0),
and all those with odd subscripts (starting with a1). Since a1 = 0
we immediately know that

a2k+1 = 0, k = 1,2,3, . . .

Now we can see why we didn’t want to allow a0 = 0 above. This would
have resulted in a trivial solution R(z) = 0.

fasshauer@iit.edu MATH 461 – Chapter 7 62

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

For the following discussion we assume c = +n.
Coefficient of z j , j > 1: [

(j + n)2 − n2
]

aj + aj−2 = 0

⇐⇒
(

j2 + 2nj
)

aj + aj−2 = 0

⇐⇒ aj =
−1

j2 + 2nj
aj−2, j = 2,3,4 . . .

This is a recurrence relation which requires two initial values: a0 and
a1.
The recurrence relation

couples all coefficients with even subscript (starting with a0),
and all those with odd subscripts (starting with a1). Since a1 = 0
we immediately know that

a2k+1 = 0, k = 1,2,3, . . .

Now we can see why we didn’t want to allow a0 = 0 above. This would
have resulted in a trivial solution R(z) = 0.
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Vibrating Circular Membranes, Bessel Functions

Let’s calculate the coefficients aj with even subscripts using the
recurrence relation aj = −1

j2+2nj aj−2, j = 2,3,4, . . ..

a2 =
−1

22 + 2n2
a0 =

−1
4 + 4n

a0 =
−1

1(n + 1)22 a0

a4 =
−1

42 + 2n4
a2 =

−1
16 + 8n

a2 =
−1

2(n + 2)22 a2 =
(−1)2

1 · 2(n + 1)(n + 2)(22)2 a0

a6 =
−1

62 + 2n6
a4 =

−1
36 + 12n

a4 =
−1

3(n + 3)22 a4 =
(−1)3

1 · 2 · 3(n + 1)(n + 2)(n + 3)(22)3 a0

a2k =
(−1)k

k !(n + 1)(n + 2) · · · (n + k)(22)k a0, k = 1,2,3, . . .
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Vibrating Circular Membranes, Bessel Functions

Going back to the power series (7) for R we now know that

R(z) = zc
∞∑

j=0

ajz j

= zn
∞∑

k=0

a2kz2k =
∞∑

k=0

a2kz2k+n

with a2k = (−1)k

k!(n+1)(n+2)···(n+k)(22)k a0, k = 1,2,3, . . .

We now look at the radius of convergence of this power series using
the ratio test:

lim
k→∞

∣∣∣∣∣a2(k+1)z2(k+1)+n

a2k z2k+n

∣∣∣∣∣
= lim

k→∞

|z|2k+2+n

(k + 1)!(n + 1)(n + 2) · · · (n + k + 1)22k+2

k!(n + 1)(n + 2) · · · (n + k)22k

|z|2k+n

=
∣∣∣z
2

∣∣∣2 lim
k→∞

1
(k + 1)(n + k + 1)

= 0

Therefore the series converges for all z.
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∣∣∣∣∣a2(k+1)z2(k+1)+n

a2k z2k+n

∣∣∣∣∣
= lim

k→∞

|z|2k+2+n

(k + 1)!(n + 1)(n + 2) · · · (n + k + 1)22k+2

k!(n + 1)(n + 2) · · · (n + k)22k

|z|2k+n

=
∣∣∣z
2

∣∣∣2 lim
k→∞

1
(k + 1)(n + k + 1)

= 0

Therefore the series converges for all z.
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After all this work we are still free to choose the value of a0.

Since

a2k =
(−1)k

k !(n + 1)(n + 2) · · · (n + k)22k a0

the choice a0 = 1
n!2n gives us (using the convention that 0! = 1)

a2k =
(−1)k

k !(n + 1)(n + 2) · · · (n + k)22k
1

n!2n =
(−1)k

k !(n + k)!22k+n

and therefore

R(z) =
∞∑

k=0

a2kz2k+n =
∞∑

k=0

(−1)k

k !(n + k)!22k+n z2k+n

=
∞∑

k=0

(−1)k

k !(n + k)!

(z
2

)2k+n

We now have found the Bessel functions of the first kind of order n:

Jn(z) =
∞∑

k=0

(−1)k

k !(n + k)!

(z
2

)2k+n
, n = 0,1,2, . . .
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Remark
Even though the Bessel functions Jn are defined only via a power
series expansion, much is known about them.

In particular, as we just saw, they are the eigenfunctions of a
(singular) Sturm–Liouville problem.
They are one of the most popular so-called special functions, and
much information is collected in, e.g., [Abramowitz & Stegun].
Note that the functions we found here are J-Bessel functions.
There are also Y-, I-, and K-Bessel functions.
The Bessel functions we computed have positive integer order.
There are also families of Bessel functions with negative integer
order, or even real or complex order.
Software packages such as MATLAB, MuPAD, Maple or
Mathematica all have special routines for Bessel functions.
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In addition to being able to evaluate the Bessel functions Jn, we will
need to know their zeros.

It is known that each Bessel function Jn, n = 0,1,2, . . ., has infinitely
many distinct zeros that can be ordered zn,1 < zn,2 < . . .. They are not
equally spaced.

Figure: The Bessel function J0.
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Returning to our 3 ODEs. . .
Angular eigenvalue problem: Earlier, we already decided that

Θ′′(θ) = −µΘ(θ)

Θ(−π) = Θ(π), Θ′(−π) = Θ′(π)

has eigenvalues and eigenfunctions

µn = n2 and Θn(θ) = c1 cos nθ + c2 sin nθ, n = 0,1,2, . . .

Radial eigenvalue problem: Moreover, we’ve now found that the
eigenfunctions of

r
d
dr
(
rR′(r)

)
+
(
λr2 − n2

)
R(r) = 0

R(a) = 0, |R(0)| <∞
are (since we substituted z =

√
λr in Bessel’s equation)

Rn(z) = Jn(
√
λr) =

∞∑
k=0

(−1)k

k !(n + k)!

(√
λr
2

)2k+n

, n = 0,1,2, . . .
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Radial eigenvalue problem (cont.): Now the BCs tell us that the
eigenvalues λn,m are such that

Rn(a) = Jn(
√
λn,ma) = 0,

i.e.,
√
λn,ma is the m-th zero of the Bessel function Jn,

or

λn,m =
(zn,m

a

)2
, n = 0,1,2, . . . , m = 1,2,3, . . .

where zn,m is the m-th zero of the Bessel function of order n, i.e.,

Jn(zn,m) = 0.
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Time equation: We also know that since λn,m > 0

T ′′(t) = −λn,mc2T (t)

has general solution

Tn,m(t) = c1 cos
(√

λn,mct
)

+ c2 sin
(√

λn,mct
)
.
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Therefore, superposition requires the solution to be of the form

u(r , θ, t) =
∞∑

n=0

∞∑
m=0

[
an,mJn(

√
λn,mr) cos nθ cos

(√
λn,mct

)
+bn,mJn(

√
λn,mr) cos nθ sin

(√
λn,mct

)
+cn,mJn(

√
λn,mr) sin nθ cos

(√
λn,mct

)
+dn,mJn(

√
λn,mr) sin nθ sin

(√
λn,mct

)]
and the (Fourier) coefficients can be found using the initial conditions.

We now illustrate this with an example.
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Example (Vibration of a circularly symmetric drum with zero initial
velocity)
Because of circular symmetry there is no change in the angular
variable and the wave equation is

∂2u
∂t2 = c2 1

r
∂

∂r

(
r
∂u
∂r

)
, 0 < r < a, t > 0

with boundary conditions

u(a, t) = 0 and |u(0, t)| <∞

and initial conditions

u(r ,0) = f (r) and
∂u
∂t

(r ,0) = 0.
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Example ((cont.))
For separation of variables we require only a two-way split, so

u(r , t) = R(r)T (t),

and our resulting ODEs are

T ′′(t) = −λc2T (t)

and

d
dr
(
rR′(r)

)
+ λrR(r) = 0

R(a) = 0 and |R(0)| <∞.
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Example ((cont.))
Using the product rule we can rewrite the radial ODE

d
dr
(
rR′(r)

)
+ λrR(r) = 0

as
rR′′(r) + R′(r) + λrR(r) = 0

and then multiply by r and do the substitution z =
√
λr as before to

recognize

r2R′′(r) + rR′(r) + λr2R(r) = 0
z=
√
λr

=⇒ z2R′′(z) + zR′(z) + z2R(z) = 0

as Bessel’s equation for the case n = 0, i.e., for J0.
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Example ((cont.))
Therefore we have the solution

R(z) = J0(
√
λnr)

with
√
λna the n-th zero of the Bessel function J0 (all of which are

positive).

Inserting these eigenvalues into the time-equation we get the solutions

Tn(t) = c1 cos
√
λnct + c2 sin

√
λnct

and superposition gives us

u(r , t) =
∞∑

n=1

[
an cos

√
λnct + bn sin

√
λnct

]
J0(
√
λnr).

fasshauer@iit.edu MATH 461 – Chapter 7 75

http://math.iit.edu
http://math.iit.edu/~fass


Vibrating Circular Membranes, Bessel Functions

Example ((cont.))
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Example ((cont.))
The first initial condition gives

u(r ,0) =
∞∑

n=1

anJ0(
√
λnr)

!
= f (r).

This is a Fourier-Bessel series with coefficients

an =

∫ a

0
f (r)J0(

√
λnr)rdr∫ a

0
J2

0 (
√
λnr)rdr

.

Note the role of the weight σ(r) = r from the SL equation in the
integrals.
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The first initial condition gives

u(r ,0) =
∞∑

n=1

anJ0(
√
λnr)

!
= f (r).

This is a Fourier-Bessel series with coefficients

an =

∫ a

0
f (r)J0(

√
λnr)rdr∫ a

0
J2

0 (
√
λnr)rdr

.

Note the role of the weight σ(r) = r from the SL equation in the
integrals.
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Example ((cont.))
Similarly,

∂u
∂t

(r ,0) =
∞∑

n=1

√
λncbnJ0(

√
λnr)

!
= 0

with

bn =
1

c
√
λn

∫ a
0 0J0(

√
λnr)rdr∫ a

0 J2
0 (
√
λnr)rdr

= 0.

Remark
This problem is illustrated in the Mathematica notebook Drum.nb. The
notebook also contains an illustration of the modes and a second
example (vibration of a rectangular drum).
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Isospectral Drums
In the 1960s Mark Kac (at the time a mathematician at Rockefeller
University in New York) asked the question “Can one hear the shape of
a drum?” [Kac (1966)].

The answer to this inverse
problem was not provided
until the 1990s by Carolyn
Gordon, David Webb and
Scott Wolpert in a paper
entitled “One Cannot Hear
the Shape of a Drum”
[GWW (1992)].

Detailed numerical computations illustrating this problem were
presented in [Driscoll (1997)] (see also [Peterson (1997)]).
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