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Derivation of Vertically Vibrating Strings

Vibrating Strings

We will now derive a new mathematical model.

Consider a stretched elastic string
of length L with equilibrium position
along the x-axis.
Every point (x ,0), 0 ≤ x ≤ L, of the
string has a displacement

y = u(x , t)

at any given time t ≥ 0.

Slow Normal Fast Play/Pause Stop
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Derivation of Vertically Vibrating Strings

In order to be able to come up with a reasonable (and manageable)
mathematical model we need to make some simplifying assumptions:

We consider only small
displacements (relative to the
length of the string).
This implies that we can
neglect horizontal
displacements.
We assume a perfectly flexible
string, i.e., only tangential
forces are acting on the string
(see the figure).

Here we denote by
T the (tangential) tension,
θ the angle T forms with the horizontal (measured
counter-clockwise).
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Derivation of Vertically Vibrating Strings

For a small segment from x to x + ∆x we will use Newton’s law

F = m a

coupled with a conservation law that balances the forces in a segment
of the string as

{total force according to Newton}
=

{vertical force at left end of segment}
+

{vertical force at right end of segment}
+

{vertical component of body force (or possible external force)}

or
m a = VL + VR + Vbody

to derive a PDE for the displacement u = u(x , t).
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Derivation of Vertically Vibrating Strings

To this end we need
mass:

m(x) = ρ0(x)︸ ︷︷ ︸
density

∆x

acceleration:

a(x , t) =
∂2u
∂t2 (x , t)

body force:
Vbody (x , t) = ρ0(x)∆x Q(x , t)

with Q(x , t) the vertical component of the body force per unit mass

A commonly used body force is Vbody = −m g.
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Derivation of Vertically Vibrating Strings

We also need to carefully study the tensile forces in the string.

Since the displacement and motion are assumed to happen only in the
vertical direction we require only the vertical component of the tensile
force:

At the left end:

VL(x , t) = −T (x , t) sin θ(x , t)

At the right end:

VR(x , t) = T (x+∆x , t) sin θ(x+∆x , t)
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Derivation of Vertically Vibrating Strings

Putting all of this together, the balance of force equation gives us

ρ0(x)∆x
∂2u
∂t2 (x , t) = VL(x , t) + VR(x , t) + ρ0(x)∆x Q(x , t)

= −T (x , t) sin θ(x , t) + T (x + ∆x , t) sin θ(x + ∆x , t)
+ρ0(x)∆x Q(x , t)

If we divide by ∆x and let ∆x go to zero we get

ρ0(x)
∂2u
∂t2 (x , t) =

T (x + ∆x , t) sin θ(x + ∆x , t)− T (x , t) sin θ(x , t)
∆x︸ ︷︷ ︸

→ ∂
∂x [T (x ,t) sin θ(x ,t)] as ∆x→0

+ρ0(x)Q(x , t)
i.e.,

ρ0(x)
∂2u
∂t2 (x , t) =

∂

∂x
[T (x , t) sin θ(x , t)] + ρ0(x)Q(x , t).
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Derivation of Vertically Vibrating Strings

Since the vertical displacement is assumed to be small, the angle
θ(x , t) is also small (so that cos θ(x , t) ≈ 1).
Therefore,

sin θ(x , t) ≈ sin θ(x , t)
cos θ(x , t)

= tan θ(x , t)

Here it is important to note that tan θ(x , t) corresponds to the “slope” of
the string, i.e.,

tan θ(x , t) =
∂u
∂x

(x , t).

Thus

ρ0(x)
∂2u
∂t2 (x , t) =

∂

∂x
[T (x , t) sin θ(x , t)] + ρ0(x)Q(x , t)

turns into the PDE for the vibrating string

ρ0(x)
∂2u
∂t2 (x , t) =

∂

∂x

[
T (x , t)

∂u
∂x

(x , t)
]

+ ρ0(x)Q(x , t).
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Derivation of Vertically Vibrating Strings

In order to get the commonly used version of the 1D wave equation we
make two further assumptions:

Small displacements and perfectly elastic strings imply an
approximately constant tension, i.e.,

T (x , t) ≈ T0 = const.

So

ρ0(x)
∂2u
∂t2 (x , t) = T0

∂2u
∂x2 (x , t) + ρ0(x)Q(x , t)

Often the external force term can be neglected because the
weight of the string is small compared to the tension so that there
is no “sag” in the string. Then we have

∂2u
∂t2 (x , t) = c2∂

2u
∂x2 (x , t) with c2 =

T0

ρ0(x)
,

the 1D wave equation.

fasshauer@iit.edu MATH 461 – Chapter 4 11

http://math.iit.edu
http://math.iit.edu/~fass


Derivation of Vertically Vibrating Strings

Since the 1D wave equation contains
a second-order spatial derivative term and
a second-order time derivative term

we need to specify
two spatial conditions (as usual, we do this in the form of
boundary conditions – see next section), and
two temporal conditions. These will be given as

initial position: u(x ,0) = f (x) and

initial velocity:
∂u
∂t

(x ,0) = g(x).
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Boundary Conditions

Fixed Ends

The simplest form of boundary conditions is

u(0, t) = 0
u(L, t) = 0

We could also have ends that are affixed to a moving support. Then
they would be of the form

u(0, t) = f1(t)
u(L, t) = f2(t)
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Boundary Conditions

Elastic Ends

This will occur if a string is, e.g., attached to a spring-mass system

Thus
u(0, t) = y(t),

where y(t) is unknown. In fact, y is determined by an ODE for a
spring-mass system with a possibly moving support ys(t).
Note that – to keep things manageable – we assume that the
spring-mass system moves only vertically.
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Boundary Conditions

The ODE for y is obtained by combining Newton’s and Hooke’s laws:

m
d2y
dt2 (t) = −k [y(t)− ys(t)− `] + other forces,

where
k is the spring constant,
ys(t) denotes the moving support of the spring, possibly driven by
some external force,
` is the length of the unstretched spring.

The “other forces” should include the vertical component of the tensile
force of the string:

T (0, t) sin θ(0, t)
small θ
≈ T0 tan θ(0, t) = T0

∂u
∂x

(0, t).

Thus, elastic BCs are of the form

m
d2y
dt2 (t) = −k [y(t)− ys(t)− `] + T0

∂u
∂x

(0, t) + g(t).
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Boundary Conditions

In the special case
g(t) = 0 (i.e., no additional external forces)
with a spring-mass system with small mass, i.e., m ≈ 0,
and taking y(t) = u(0, t)

we get the BC

k [u(0, t)− ys(t)− `] = T0
∂u
∂x

(0, t)

⇐⇒ k [u(0, t)− yE (t)] = T0
∂u
∂x

(0, t),

where yE (t) = ys(t) + ` denotes the equilibrium position of the
spring-mass system.
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Boundary Conditions

If in addition yE (t) = 0, i.e., the equilibrium position of the spring-mass
system coincides with the equilibrium position of the string and occurs
at the origin, then

k [u(0, t)− yE (t)] = T0
∂u
∂x

(0, t)

becomes
T0
∂u
∂x

(0, t) = ku(0, t).

Remark
Note that this BC is analogous to the one we obtained via Newton’s
law of cooling for the 1D heat equation.
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Boundary Conditions

Remark
Note that the tensile force and spring constant are usually positive, i.e.,
T0 > 0, k > 0. Then we see from

T0
∂u
∂x

(0, t) = ku(0, t) that u(0, t) > 0⇐⇒ ∂u
∂x

(0, t) > 0.

However, at the right end, x = L, we will have

u(L, t) > 0⇐⇒ ∂u
∂x

(L, t) < 0,

i.e., upward motion pulls the string “inside”. Therefore, the
corresponding BC at the right end has a different sign and looks like

T0
∂u
∂x

(L, t) = −ku(L, t).
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Boundary Conditions

Free Ends

This will happen when the string is attached to a ring that slides
frictionless along a vertical support.

Physically, this corresponds to the limiting case of the spring-mass
system for k → 0, i.e.,

T0
∂u
∂x

(0, t) = 0.

Remark
Note the analogy to the insulated end condition for the heat equation.
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Example: Vibrating String with Fixed Ends

We solve the PDE

∂2

∂t2 u(x , t) = c2 ∂
2

∂x2 u(x , t), for 0 < x < L, t > 0, (1)

with boundary conditions

u(0, t) = u(L, t) = 0 for t > 0 (2)

and initial conditions

u(x ,0) = f (x) for 0 < x < L (initial position) (3)
∂u
∂t

(x ,0) = g(x) for 0 < x < L (initial velocity) (4)

From our earlier derivations the constant c2 = T0
ρ0

is given as the ratio
of tension to density.
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Example: Vibrating String with Fixed Ends

Remark
Since the PDE and its BCs are linear and homogeneous we attempt to
solve the problem using separation of variables.

The usual Ansatz u(x , t) = ϕ(x)T (t) gives us the partial derivatives

∂2

∂t2 u(x , t) = ϕ(x)T ′′(t)

∂2

∂x2 u(x , t) = ϕ′′(x)T (t)

so that we have
ϕ(x)T ′′(t) = c2ϕ′′(x)T (t)

or
1
c2

T ′′(t)
T (t)

=
ϕ′′(x)

ϕ(x)
= −λ.
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Example: Vibrating String with Fixed Ends

The resulting two ODEs are

T ′′(t) = −λc2T (t) (5)

and
ϕ′′(x) = −λϕ(x) (6)

with BCs
ϕ(0) = ϕ(L) = 0. (7)

Remark
We chose −λ for the separation constant above so that (6)-(7) is one
of our standard boundary-value problems with well-known eigenvalues
and eigenfunctions

λn =
(nπ

L

)2
, ϕn(x) = sin

nπx
L
, n = 1,2,3, . . .
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Example: Vibrating String with Fixed Ends

Remark
Moreover, the ODE (5) for the time-dependent component T has the
physically meaningful, oscillating solution for positive λ, i.e.,

T (t) = c1 cos c
√
λt + c2 sin c

√
λt .

For this example the other two types of solution
T (t) = c1t + c2 for λ = 0

T (t) = c1ec
√
−λt + c2e−c

√
−λt for λ < 0

are not relevant.
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Example: Vibrating String with Fixed Ends

Using the principle of superposition to combine the solutions of the
ODEs (5) and (6) we get

u(x , t) =
∞∑

n=1

[
An cos

cnπt
L

+ Bn sin
cnπt

L

]
sin

nπx
L

To determine the expansion coefficients An and Bn we use the initial
conditions (3) and (4).
Since cos 0 = 1 and sin 0 = 0 we have

u(x ,0) =
∞∑

n=1

An sin
nπx

L
!

= f (x)

so that

An =
2
L

∫ L

0
f (x) sin

nπx
L

dx .
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Example: Vibrating String with Fixed Ends

In order to apply the initial condition (4) we need to ensure that
u is continuous and
∂u
∂t is piecewise smooth.

Then we can apply term-by-term differentiation to get

∂u
∂t

(x , t) =
∞∑

n=1

[
−An

cnπ
L

sin
cnπt

L
+ Bn

cnπ
L

cos
cnπt

L

]
sin

nπx
L

and
∂u
∂t

(x ,0) =
∞∑

n=1

Bn
cnπ

L
sin

nπx
L

!
= g(x)

so that

Bn =
2

cnπ

∫ L

0
g(x) sin

nπx
L

dx .

The solution for this problem is illustrated in the Mathematica notebook
Wave.nb.
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Example: Vibrating String with Fixed Ends

Normal Modes and Overtones: Applications to Music

For each n, the n-th term of the Fourier series solution

un(x , t) =

[
An cos

cnπt
L

+ Bn sin
cnπt

L

]
sin

nπx
L

is called the n-th normal mode of the solution.

The term un describes a harmonic motion with frequency

fn =
cnπ

L
/2π =

cn
2L

or with circular frequency ω = cnπ
L .

The frequencies fn are called the natural frequencies of the solution u.
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Example: Vibrating String with Fixed Ends

Figure: Third mode, or second overtone, n = 3.
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Example: Vibrating String with Fixed Ends

Note that each one of the modes will be zero for all t if

sin
nπx

L
= 0, i.e.,

nπx
L

= kπ, k = 1,2,3, . . .

The points

xk = k
L
n
, k = 1,2, . . . ,n

are called nodes.

By placing their finger at a node point, players of string instruments
such as guitars, violins, etc., can produce so-called flageolet tones.
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Example: Vibrating String with Fixed Ends

A string instrument can be tuned, i.e., the pitch can be made higher by
decreasing the length of the string, L, or

increasing c. Since c =
√

T0
ρ0

this means that one can either
increase the tension or
decrease the density of the string.

Remark
Overtones are illustrated acoustically in the MATLAB script
overtones.m.

We can hear there that the first overtone (i.e., with double the
frequency) is an octave higher than the fundamental mode.
Similarly, the second overtone is a fifth higher than the first
overtone,
and the third overtone is a fourth higher than the second overtone.
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Example: Vibrating String with Fixed Ends

Traveling Waves (Exercise 4.4.7)
Let’s again consider the 1D wave equation

∂2

∂t2 u(x , t) = c2 ∂
2

∂x2 u(x , t)

u(0, t) = u(L, t) = 0

u(x ,0) = f (x) and
∂u
∂t

(x ,0) = g(x) = 0

From the general solution derived above we know that

Bn =
2

cnπ

∫ L

0
g(x) sin

nπx
L

dx = 0.

Therefore

u(x , t) =
∞∑

n=1

An cos
cnπt

L
sin

nπx
L

with

An =
2
L

∫ L

0
f (x) sin

nπx
L

dx .
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Example: Vibrating String with Fixed Ends

The trigonometric identity

sinα cosβ =
1
2

[sin(α + β) + sin(α− β)]

with α = nπx
L and β = cnπt

L gives us

cos
cnπt

L
sin

nπx
L

=
1
2

[
sin
(

nπx
L

+
cnπt

L

)
+ sin

(
nπx

L
− cnπt

L

)]
=

1
2

[
sin

nπ
L

(x + ct) + sin
nπ
L

(x − ct)
]

So the solution

u(x , t) =
∞∑

n=1

An cos
cnπt

L
sin

nπx
L

becomes

u(x , t) =
1
2

∞∑
n=1

An sin
nπ
L

(x + ct) +
1
2

∞∑
n=1

An sin
nπ
L

(x − ct)
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Example: Vibrating String with Fixed Ends

Remark
Note that the two parts of

u(x , t) =
1
2

∞∑
n=1

An sin
nπ
L

(x + ct) +
1
2

∞∑
n=1

An sin
nπ
L

(x − ct)

are Fourier sine series of f evaluated at x + ct and x − ct, respectively.

Therefore
u(x , t) =

1
2

[
f (x + ct) + f (x − ct)

]
,

where f is the odd 2L-periodic extension of f .

Remark
This shows that we can get the solution of the 1D wave equation
without actually summing the infinite series!
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Example: Vibrating String with Fixed Ends

The solution of the 1D wave equation in the form

u(x , t) =
1
2

[
f (x + ct) + f (x − ct)

]
,

is known as d’Alembert’s solution, after Jean d’Alembert who first
formulated the 1D wave equation and proposed this form of the
solution in 1746 – 22 years before Fourier’s birth.
It can be interpreted as the average of two traveling waves:

one traveling to the left,
the other to the right

– both with speed c.
This is illustrated in the Mathematica notebook Wave.nb.

Remark
The traveling wave solution is closely related to the solution of PDEs
by the method of characteristics (see Chapter 12 in [Haberman] and
MATH 489).
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