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Piecewise Smooth Functions and Periodic Extensions

Definition
A function f , defined on [a,b], is piecewise continuous if it is
continuous on [a,b] except at finitely many points. If both f and f ′ are
piecewise continuous, then f is called piecewise smooth.

Remark
This means that the graphs of f and f ′ may have only finitely many
finite jumps.
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Piecewise Smooth Functions and Periodic Extensions
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Example
The function f (x) = |x | defined on
−π < x < π is piecewise smooth
since

f is continuous throughout the
interval,
and f ′ is discontinuous only at
x = 0.

Example
The function

f (x) =

{
x2, −π < x < 0
x2 + 1, 0 ≤ x < π

is piecewise smooth since both f
and f ′ are continuous except at
x = 0.
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Piecewise Smooth Functions and Periodic Extensions
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Example
The function

f (x) =

{
− ln(1− x), 0 ≤ x < 1
1, 1 ≤ x < 2

is not piecewise continuous (and
therefore also not piecewise
smooth) since

lim
x→1−

f (x) = lim
x→1−

− ln(1− x) =∞,

i.e., f has an infinite jump at x = 1.
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Piecewise Smooth Functions and Periodic Extensions

Periodic Extension

If f is defined on [−L,L], then its periodic extension, defined for all x , is
given by

f (x) =



...
f (x + 2L), −3L < x < −L,
f (x), −L < x < L,
f (x − 2L), L < x < 3L,
f (x − 4L), 3L < x < 5L,

...
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Piecewise Smooth Functions and Periodic Extensions

Example

Figure: Plot of f for f (x) = 1−
∣∣ x

L

∣∣.
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Piecewise Smooth Functions and Periodic Extensions

Example

Figure: Plot of f for f (x) =

{
(x + L)2, −L ≤ x ≤ 0
x2 + 1, 0 < x < L

.
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Convergence of Fourier Series

Even though we have used Fourier series to represent a given function
f within our separation of variables approach, we have never made
sure that these series actually converge.

Moreover, even if we can assure convergence, how do we know that
they converge to the function f?

Remark
This should not come as a total surprise, since for power series we
also had to determine the interval (or radius) of convergence.
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Convergence of Fourier Series

Using a more precise notation, all we can say is

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
,

i.e., we can
associate with f this Fourier series,
but not f is equal to this Fourier series.

The Fourier coefficients of f , on the other hand, are never in doubt.
They are given by

a0 =
1

2L

∫ L

−L
f (x) dx

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx , n = 1,2, . . .

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx , n = 1,2, . . .
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Convergence of Fourier Series

What we need is

Theorem (Fourier Convergence Theorem)

If f is piecewise smooth on [−L,L], then the Fourier series of f
converges. Moreover,

1 at those points x where the periodic extension f of f is continuous,
the Fourier series of f converges to f (x) and

2 at jump discontinuities of the periodic extension, the Fourier series
converges to

1
2

[
f (x−) + f (x+)

]
,

i.e., the average of the left and right limits at the jump.

Remark
Note that (2) actually includes (1) since

1
2

[
f (x−) + f (x+)

]
=

1
2

[
f (x) + f (x)

]
= f (x)

provided f is continuous at x.fasshauer@iit.edu MATH 461 – Chapter 3 13
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Convergence of Fourier Series

Proof.
The proof of this theorem is not contained in [Haberman] and goes
beyond the scope of this course. It can be found in [Pinsky,
Section 1.2] or [Brown & Churchill, Section 19].

The proof requires the Dirichlet kernel

DN(x) =
1
2

+
N∑

n=1

cos nx =
sin
(
N + 1

2

)
x

2 sin x
2

as well as a careful analysis of one-sided derivatives.

The calculations for Gibbs phenomenon below gives a flavor of
this.
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Convergence of Fourier Series

Remark
The theorem above is about pointwise convergence of Fourier series.

In classical harmonic analysis there are also theorems about other
kinds of convergence of Fourier series, such as

uniform convergence or
convergence in the mean.

For these see, e.g., [Brown & Churchill, Pinsky].

We will talk about convergence in the mean in Chapter 5, and the
Gibbs phenomenon below is evidence that uniform convergence is not
guaranteed for general functions f .
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Convergence of Fourier Series

Example

Consider the function f (x) =

{
1, −L ≤ x < 0
2, 0 < x ≤ L

The Fourier series of f , a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
, is

represented by the following graph:
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Convergence of Fourier Series

Example (cont.)

Remark
Even if we know that the series converges, we have

f (x) = its Fourier series only for x ∈ (−L,L) (and provided f is
continuous at x).
At all other values of x the Fourier series equals the periodic
extension of f ,
except at jump discontinuities, where it equals the average jump.

What are the Fourier coefficients for this example?
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Convergence of Fourier Series

Example (cont.)

a0 =
1

2L

∫ L

−L
f (x) dx

=
1

2L

[∫ 0

−L
1 dx +

∫ L

0
2 dx

]

=
1

2L
[L + 2L] =

3
2
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Convergence of Fourier Series

Example (cont.)

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx

=
1
L

[∫ 0

−L
cos

nπx
L

dx + 2
∫ L

0
cos

nπx
L

dx

]

=
1
L

[∫ L

−L
cos

nπx
L

dx︸ ︷︷ ︸
=0

+

∫ L

0
cos

nπx
L

dx

]

=
L

nπL

[
sin

nπx
L

]L

0
= 0
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Convergence of Fourier Series

Example ((cont.))

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx

=
1
L

[∫ 0

−L
sin

nπx
L

dx + 2
∫ L

0
sin

nπx
L

dx

]

=
1
L

[∫ L

−L
sin

nπx
L

dx︸ ︷︷ ︸
=0

+

∫ L

0
sin

nπx
L

dx

]

= − L
nπL

[
cos

nπx
L

]L

0

= −cos nπ
nπ

+
cos 0
nπ

=
1− (−1)n

nπ
=

{
0, n even
2

nπ , n odd
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Convergence of Fourier Series

Example (cont.)
Summarizing, we have found that the function

f (x) =

{
1, −L ≤ x < 0
2, 0 < x ≤ L

has Fourier series

f (x) ∼ 3
2

+
∞∑

n=1

1− (−1)n

nπ
sin

nπx
L

=
3
2

+
∞∑

k=1

2
(2k − 1)π

sin
(2k − 1)πx

L
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Convergence of Fourier Series

Example (cont.)

Figure: Plot of 10-term Fourier series approximation

f (x) = 3
2 +

10∑
k=1

2
(2k − 1)π

sin
(2k − 1)πx

L
(red) together with graph of f (blue).
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Convergence of Fourier Series

The Gibbs Phenomenon
In order to understand the oscillations of the previous plots, and in
particular the overshoot, we consider an almost identical function:

f (x) =

{
−1, −π ≤ x < 0
1, 0 < x ≤ π

with truncated Fourier series

f2N(x) = f2N−1(x) =
N∑

n=1

2 (1− (−1)n)

nπ
sin nx =

N∑
k=1

4
π

sin(2k − 1)x
2k − 1

Remark
Compared to the previous example, the sines are simpler since L = π,
and we have a vertical shift by a0 = 0 and a vertical stretching so that

bn = 2
1− (−1)n

nπ
=

{
0, n even
4

nπ , n odd
.
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Convergence of Fourier Series

Gibbs Phenomenon (cont.)

To find the overshoot at the jump discontinuity we look at the zeros of
the derivative of the truncated Fourier series (to locate its maxima), i.e.,

f ′2N−1(x) =
4
π

N∑
k=1

cos(2k−1)x =
4
π

[cos x + cos 3x + . . .+ cos(2N − 1)x ]

To find the zeros of this function we multiply both sides by sin x , i.e.,

sin xf ′2N−1(x) =
4
π

[sin x cos x + sin x cos 3x + . . .+ sin x cos(2N − 1)x ]

Using the trigonometric identity sin x cos kx = sin(k+1)x−sin(k−1)x
2 we get

sin xf ′2N−1(x) =
2
π
[(sin 2x − sin 0) + (sin 4x − sin 2x) + . . .+ (sin 2Nx − sin(2N − 2)x)]

=
2
π

sin 2Nx .
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Convergence of Fourier Series

Gibbs Phenomenon (cont.)

Now,
sin 2Nx = 0 if 2Nx = ±π,±2π, . . . ,±2Nπ.

The maximum overshoot occurs at x = π
2N and its value is

f2N−1

( π

2N

)
=

4
π

N∑
k=1

sin (2k−1)π
2N

2k − 1

=
2
π

2N
π

π

N

N∑
k=1

sin (2k−1)π
2N

2k − 1

=
2
π

N∑
k=1

sin (2k−1)π
2N

(2k−1)π
2N

π

N
.
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Convergence of Fourier Series

Gibbs Phenomenon (cont.)

If we interpret
N∑

k=1

sin (2k−1)π
2N

(2k−1)π
2N

π

N

as a partial Riemann sum with ∆x = π
N and midpoints

x∗ = π
2N ,

3π
2N , . . . ,

(2N−1)π
2N for the partition 0, πN ,

2π
N , . . . ,

(N−1)π
N , π of [0, π]

then
f2N−1

( π

2N

)
→ 2

π

∫ π

0

sin x
x

dx for N →∞.

This integral can be evaluated numerically to get

f2N−1

( π

2N

)
≈ 1.178979744472167 . . . .
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Convergence of Fourier Series

Gibbs Phenomenon (cont.)

Since the actual size of the jump discontinuity is 2, we have an
approximately 9% overshoot. This is true in general [Pinsky, p. 60]:

Theorem
If f is piecewise smooth on (−π, π) then the overshoot of the truncated
Fourier series of f at a discontinuity x0 (the Gibbs phenomenon) is
approximately 9% of the jump, i.e.,

0.09 [f (x0+)− f (x0−)] .

Remark
The “Gibbs phenomenon” was actually discovered by Henry
Wilbraham in 1848. Gibbs was just more famous, published in a better
journal (50 years later), and built in some mistakes – perhaps drawing
more attention to his work (for further discussion see [Trefethen,
Chapter 9]).
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Fourier Sine and Cosine Series

We begin by reviewing the concepts of odd and even functions:

Definition
f is an odd function if f (−x) = −f (x) for all x in the domain of f .

Remark
The graph of an odd function is symmetric about the origin.

For an odd function we have
∫ L
−L f (x) dx = 0.∫ L

−L
f (x) dx =

∫ 0

−L
f (x)︸︷︷︸

u = −x
du = −dx

dx +

∫ L

0
f (x) dx

= −
∫ 0

L
f (−u)︸ ︷︷ ︸
=−f (u)

du +

∫ L

0
f (x) dx

= −
∫ L

0
f (u) du +

∫ L

0
f (x) dx = 0
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Fourier Sine and Cosine Series

Definition
f is an even function if f (−x) = f (x) for all x in the domain of f .

Remark
The graph of an even function is symmetric about the y-axis.
For an even function we have∫ L

−L
f (x) dx = 2

∫ L

0
f (x) dx ,

which can be shown similarly to the analogous property for odd
functions.
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Fourier Sine and Cosine Series

Let’s consider the Fourier series of an odd function

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
with

a0 =
1
2L

∫ L

−L
f (x)︸︷︷︸
odd

dx = 0, an =
1
L

∫ L

−L
f (x)︸︷︷︸
odd

cos
nπx

L︸ ︷︷ ︸
even︸ ︷︷ ︸

odd

dx = 0

bn =
1
L

∫ L

−L
f (x)︸︷︷︸
odd

sin
nπx

L︸ ︷︷ ︸
odd︸ ︷︷ ︸

even

dx =
2
L

∫ L

0
f (x) sin

nπx
L

dx(= Bn)

Therefore,

f (x) ∼
∞∑

n=1

Bn sin
nπx

L
,

i.e., the Fourier series is automatically a Fourier sine series.
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Fourier Sine and Cosine Series

What does the Fourier sine series of f converge to?

Theorem
If f is piecewise smooth on [0,L], then the Fourier sine series of f
converges. Moreover,

1 at those points x where the odd periodic extension of f is
continuous, the Fourier sine series converges to the odd periodic
extension and

2 at jump discontinuities of the odd periodic extension, the Fourier
sine series converges to the average of the left and right limits at
the jump.
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Fourier Sine and Cosine Series

Example

Figure: Plot of odd periodic extension of f (x) = 1− x
L .
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Fourier Sine and Cosine Series

Remark
Even if f is not an odd function, it may still be necessary to represent it
by a Fourier sine series.

Example
The heat equation problem

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t), 0 < x < L, t > 0

u(0, t) = u(L, t) = 0

u(x ,0) = cos
πx
L

has sines as eigenfunctions, so we need to find the Fourier sine series
expansion of f (x) = cos πx

L .
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Fourier Sine and Cosine Series

Example (cont.)

We know u(x , t) = ϕ(x)G(t), with eigenvalues λn =
(nπ

L

)2,
n = 1,2,3, . . . and eigenfunctions

ϕn(x) = sin
nπx

L

as well as Gn(t) = e−λnkt .
Therefore

u(x , t) =
∞∑

n=1

Bn sin
nπx

L
e−k( nπ

L )
2
t

and

u(x ,0) =
∞∑

n=1

Bn sin
nπx

L
!

= cos
πx
L
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Fourier Sine and Cosine Series

Example (cont.)

In HW 3.3.2a you should showa

Bn =
2
L

∫ L

0
cos

πx
L

sin
nπx

L
dx =

{
0, n odd

4n
π(n2−1) , n even

Therefore, letting n = 2k (even), we have

cos
πx
L

=
∞∑

k=1

8k
π(4k2 − 1)

sin
2kπx

L

and the equality is true for 0 < x < L (since the cosine equals its odd
periodic extension there).
For x = 0 and x = L the series is zero (which is equal to the average
jump of the cosine function there).

aRemember that we established the orthogonality of sine and cosine only
on [−L, L], not on [0, L]
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Fourier Sine and Cosine Series

Consider the Fourier series of an even function

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
with

a0 =
1
2L

∫ L

−L
f (x)︸︷︷︸
even

dx =
1
L

∫ L

0
f (x) dx(= A0)

an =
1
L

∫ L

−L
f (x) cos

nπx
L︸ ︷︷ ︸

even

dx =
2
L

∫ L

0
f (x) cos

nπx
L

dx(= An)

bn =
1
L

∫ L

−L
f (x) sin

nπx
L︸ ︷︷ ︸

odd

dx = 0

Therefore,

f (x) ∼ A0 +
∞∑

n=1

An cos
nπx

L
,

i.e., the Fourier series is automatically a Fourier cosine series.
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Fourier Sine and Cosine Series

Theorem
If f is piecewise smooth on [0,L], then the Fourier cosine series of f
converges. Moreover,

1 at those points x where the even periodic extension of f is
continuous, the Fourier cosine series converges to the even
periodic extension and

2 at jump discontinuities of the even periodic extension, the Fourier
cosine series converges to the average of the left and right limits
at the jump.

Remark
Note that jump discontinuities are possible only for 0 < x < L, i.e., if f
itself had jump discontinuities. The even periodic extension cannot
have any jumps at x = 0 or x = ±L.
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Fourier Sine and Cosine Series

Example

Figure: Plot of even periodic extension of f (x) = x2 + 1.
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Fourier Sine and Cosine Series

Example
Find the Fourier cosine series expansion of the function

f (x) =

{
1, 0 ≤ x < L

2

0, L
2 ≤ x ≤ L

and sketch its graph.

Figure: Plot of Fourier cosine series f (x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
.
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Fourier Sine and Cosine Series

Example (cont.)
Let’s compute the Fourier cosine coefficients:

A0 =
1
L

∫ L

0
f (x) dx

=
1
L

[∫ L/2

0
1 dx +

∫ L

L/2
0 dx

]

=
1
L

L
2

=
1
2
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Fourier Sine and Cosine Series

Example (cont.)

An =
2
L

∫ L

0
f (x) cos

nπx
L

dx

=
2
L

[∫ L/2

0
cos

nπx
L

dx +

∫ L

L/2
0 cos

nπx
L

dx

]

=
2
L

L
nπ

[
sin

nπx
L

]L/2

0

=
2

nπ
sin

nπ
2

=

{
0, n = 2k even

2
(2k−1)π (−1)k+1, n = 2k − 1 odd

Therefore

f (x) ∼ 1
2

+
∞∑

k=1

2(−1)k+1

(2k − 1)π
cos

(2k − 1)πx
L

Note that “∼” equals “=” for all x ∈ [0,L] except x = L
2 .
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Fourier Sine and Cosine Series

Even and odd parts of functions
Theorem
Any function f can be written as the sum of an even and an odd
function:

f (x) =
1
2

[f (x) + f (−x)]︸ ︷︷ ︸
:=fe(x)

+
1
2

[f (x)− f (−x)]︸ ︷︷ ︸
:=fo(x)

Proof.
Indeed, fe is even

fe(−x) =
1
2

[f (−x) + f (x)] = fe(x),

and fo is odd

fo(−x) =
1
2

[f (−x)− f (x)] = −1
2

[f (x)− f (−x)] = −fo(x).
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Fourier Sine and Cosine Series

Now, the Fourier series for an arbitrary function f is given by

f (x) ∼ a0 +
∞∑

n=1

an cos
nπx

L︸ ︷︷ ︸
even

+
∞∑

n=1

bn sin
nπx

L︸ ︷︷ ︸
odd

with Fourier coefficients

a0 =
1
2L

∫ L

−L
f (x)dx , an =

1
L

∫ L

−L
f (x) cos

nπx
L

dx , bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx .

On the other hand,
∞∑

n=1

bn sin
nπx

L

is a Fourier sine series.
However, it is the Fourier sine series of fo, not of f !
Note that the Fourier sine series of f has coefficients

Bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx .
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Fourier Sine and Cosine Series

We can make a similar observation for cosine.

Therefore,

a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
︸ ︷︷ ︸

Fourier series of f

= a0 +
∞∑

n=1

an cos
nπx

L︸ ︷︷ ︸
cosine series of fe

+
∞∑

n=1

bn sin
nπx

L︸ ︷︷ ︸
sine series of fo
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Fourier Sine and Cosine Series

Summary: Convergence of Fourier series

Let f be piecewise smooth. Then
The Fourier series of f is continuous for all x ⇐⇒

f is continuous on [−L,L] (i.e., no jumps inside) and
f (−L) = f (L) (i.e., no jumps at end).
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Fourier Sine and Cosine Series

The Fourier cosine series of f is continuous for all x ⇐⇒
f is continuous on [0,L].
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Fourier Sine and Cosine Series

The Fourier sine series of f is continuous for all x ⇐⇒
f is continuous on [0,L] (i.e., no jumps inside) and
f (0) = f (L) = 0 (i.e., no jumps at end).
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Term-by-Term Differentiation of Fourier Series

Recall that in HW 2.5.5c we had to deal with the boundary condition

∂u
∂r

(1, θ) = f (θ),

where

u(r , θ) =
∞∑

n=1

Bnr2n sin 2nθ.

In order to determine the coefficients bn we needed to differentiate the
infinite series, i.e., find

∂u
∂r

(r , θ) =
∞∑

n=1

2nBnr2n−1 sin 2nθ.

Was this justified?
Does this new series converge? If so, does it converge to ∂u

∂r (r , θ)?
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Term-by-Term Differentiation of Fourier Series

Example

Consider the function f (x) = x , and find its Fourier sine series.
Then, compare the termwise derivative of the series with the “correct”
derivative f ′(x) = 1.
We know

x ∼
∞∑

n=1

Bn sin
nπx

L

with

Bn =
2
L

∫ L

0
x sin

nπx
L

dx .
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Using integration by parts we have

Bn =
2
L

∫ L

0
x sin

nπx
L

dx

=
2
L

[
−x

L
nπ

cos
nπx

L

∣∣∣∣L
0

+
L

nπ

∫ L

0
cos

nπx
L

dx

]

=
2
L

[
− L2

nπ
cos nπ +

L2

(nπ)2 sin
nπx

L

∣∣∣L
0

]
=

2
L

[
− L2

nπ
cos nπ

]
= −2L

nπ
(−1)n

Therefore,

x ∼ 2L
π

∞∑
n=1

(−1)n+1

n
sin

nπx
L

(1)

for which we know that “∼” equals “=” for 0 ≤ x < L.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Now we consider the termwise derivative of the Fourier sine series

x ∼ 2L
π

∞∑
n=1

(−1)n+1

n
sin

nπx
L
,

i.e.,

2L
π

∞∑
n=1

(−1)n+1

n
nπ
L

cos
nπx

L

= 2
∞∑

n=1

(−1)n+1 cos
nπx

L
.

Remark
Note that this is a divergent series since the terms in the sequence do
not approach zero for n→∞, and therefore the series diverges by the
standard test for divergence from calculus.

fasshauer@iit.edu MATH 461 – Chapter 3 53

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Example (cont.)
Obviously, we must conclude that

1 6= 2
∞∑

n=1

(−1)n+1 cos
nπx

L
.

In fact, the Fourier cosine series of f ′(x) = 1 is given by

f ′(x) = 1 ∼ 1,

i.e.,
a0 = 1, an = 0 for n ≥ 1.

Obviously, we could replace “∼” by “=”.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Why did this not work?
What caused the trouble?

Figure: Plot of f (x) = x for 0 < x < L.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)

Figure: Plot of odd extension of f (x) = x .
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Term-by-Term Differentiation of Fourier Series

Example (cont.)

Figure: Plot of odd periodic extension (actually, Fourier sine series) of
f (x) = x .

The jumps in the Fourier sine series at odd multiples of L prevent the
series from being differentiable.
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Term-by-Term Differentiation of Fourier Series

Theorem (Differentiation of Fourier Series)
A continuous Fourier series can be differentiated term-by-term
provided f ′ is piecewise smooth.

Remark
In other words, the Fourier series of a continuous function f which
satisfies f (−L) = f (L) can be differentiated term-by-term provided
f ′ is piecewise smooth.
Piecewise smoothness of f ′ ensures that its Fourier series
converges.
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Term-by-Term Differentiation of Fourier Series

Proof

The Fourier series of f is

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
(2)

with

a0 =
1
2L

∫ L

−L
f (x)dx , an =

1
L

∫ L

−L
f (x) cos

nπx
L

dx , bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx .

Since f ′ is piecewise smooth, it has a convergent Fourier series of the
form

f ′(x) ∼ A0 +
∞∑

n=1

[
An cos

nπx
L

+ Bn sin
nπx

L

]
(3)

with

A0 =
1
2L

∫ L

−L
f ′(x)dx , An =

1
L

∫ L

−L
f ′(x) cos

nπx
L

dx , Bn =
1
L

∫ L

−L
f ′(x) sin

nπx
L

dx .
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Term-by-Term Differentiation of Fourier Series

If allowed, term-by-term differentiation of the Fourier series (2), i.e.,

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
would yield

f ′(x) ∼
∞∑

n=1

[
−nπ

L
an sin

nπx
L

+
nπ
L

bn cos
nπx

L

]
.

Therefore, comparing with (3), we need to show that

A0 = 0, An =
nπ
L

bn, Bn = −nπ
L

an.

fasshauer@iit.edu MATH 461 – Chapter 3 60

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Let’s actually compute the Fourier coefficients of f ′ based on the
information we have:

A0 =
1

2L

∫ L

−L
f ′(x) dx

=
1

2L
[f (x)]L−L

=
1

2L
[f (L)− f (−L)]

Since we assumed that the Fourier series of f is continuous, i.e., in
particular, that f (L) = f (−L), we have

A0 = 0.
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Term-by-Term Differentiation of Fourier Series

An =
1
L

∫ L

−L
f ′(x) cos

nπx
L

dx
parts
=
[

u = cos nπx
L , du = − nπ

L sin nπx
L dx

dv = f ′(x)dx , v = f (x)

]
=

1
L

[
f (x) cos

nπx
L

∣∣∣L
−L

+

∫ L

−L
f (x)

nπ
L

sin
nπx

L
dx︸ ︷︷ ︸

nπbn

]

=
1
L

[
f (L) cos nπ − f (−L) cos(−nπ)︸ ︷︷ ︸

=cos nπ

+nπbn

]
=

1
L

[(
f (L)− f (−L)︸ ︷︷ ︸

=0, since F.S. of f cont.

)
cos nπ + nπbn

]
=

nπ
L

bn.

Bn is treated similarly. �
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Term-by-Term Differentiation of Fourier Series

If the Fourier series of f is not continuous, i.e., if f (−L) 6= f (L), then the
proof above shows us that

A0 =
1

2L
[f (L)− f (−L)] ,

An =
1
L

(−1)n [f (L)− f (−L)] +
nπ
L

bn,

Bn = −nπ
L

an.

Therefore, even if the Fourier series of f itself is not continuous, the
Fourier series of the derivative of a continuous function f is given by

f ′(x) ∼ 1
2L

[f (L)− f (−L)] +
∞∑

n=1

(
(−1)n

L
[f (L)− f (−L)] +

nπ
L

bn

)
cos

nπx
L

−nπ
L

an sin
nπx

L
.
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Term-by-Term Differentiation of Fourier Series

Theorem (Differentiation of Fourier Cosine Series)
A continuous Fourier cosine series can be differentiated term-by-term
provided f ′ is piecewise smooth.

Remark
In other words, the Fourier cosine series of a continuous function f
can be differentiated term-by-term provided f ′ is piecewise
smooth.
No additional end conditions are required for f since f (−L) = f (L)
is automatically satisfied due to even extension.

Proof.
HW 3.4.4b
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Term-by-Term Differentiation of Fourier Series

Example

Consider again the function f (x) = x , but now find its Fourier cosine
series.
Can we apply term-by-term differentiation?
If so, what is the derivative?
We know

x ∼ A0 +
∞∑

n=1

An cos
nπx

L

with

A0 =
1
L

∫ L

0
x dx =

1
L

L2

2
=

L
2
,

An =
2
L

∫ L

0
x cos

nπx
L

dx .

fasshauer@iit.edu MATH 461 – Chapter 3 65

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Example (cont.)

An =
2
L

∫ L

0
x cos

nπx
L

dx

parts
=

2
L

[
x

L
nπ

sin
nπx

L

∣∣∣∣L
0
− L

nπ

∫ L

0
sin

nπx
L

dx

]

=
2

nπ
L

nπ
cos

nπx
L

∣∣∣L
0

=
2L

(nπ)2 [(−1)n − 1] =

{
0, for n even
− 4L

(nπ)2 , for n odd

Therefore, with n = 2k − 1,

x ∼ L
2
− 4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πx
L

(4)
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Term-by-Term Differentiation of Fourier Series

Example (cont.)

Figure: Plot of odd periodic extension (i.e., Fourier cosine series) of f (x) = x .

From the plots it is clear that “∼” equals “=” in (4) for 0 ≤ x ≤ L.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Since f and its Fourier cosine series are continuous we can now
perform the term-by-term derivative of the Fourier cosine series from
(4)

x ∼ L
2
− 4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πx
L

,

i.e.,

1 ∼ 4L
π2

∞∑
k=1

π

(2k − 1)L
sin

(2k − 1)πx
L

=
4
π

∞∑
k=1

1
(2k − 1)

sin
(2k − 1)πx

L
. (5)

Remark
Note that this is the Fourier sine series of f ′(x) = 1, for 0 < x < L.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)

Figure: Plot of Fourier sine series of f ′(x) = 1.

Note that due to the jumps in the graph of the Fourier sine series “∼”
equals “=” in (5) only for 0 < x < L.

fasshauer@iit.edu MATH 461 – Chapter 3 69

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Theorem (Differentiation of Fourier Sine Series)
A continuous Fourier sine series can be differentiated term-by-term
provided f ′ is piecewise smooth.

Remark
In other words, the Fourier sine series of a continuous function f which
satisfies f (0) = f (L) = 0 can be differentiated term-by-term provided f ′

is piecewise smooth.

Proof.
See the textbook on pages 120-121.
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Term-by-Term Differentiation of Fourier Series

From the proof of the theorem we get that if f is continuous, but does
not satisfy f (0) = f (L) = 0, with Fourier sine series

f (x) ∼
∞∑

n=1

Bn sin
nπx

L

then, provided f ′ is piecewise smooth, we get the Fourier cosine series

f ′(x) ∼ 1
L

[f (L)− f (0)] +
∞∑

n=1

(
nπ
L

Bn +
2
L

[(−1)nf (L)− f (0)]

)
cos

nπx
L
.

(6)

fasshauer@iit.edu MATH 461 – Chapter 3 71

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Example

We saw earlier that for the function f (x) = x we have

x =
2L
π

∞∑
n=1

(−1)n+1

n
sin

nπx
L
, 0 < x < L.

Since f (0) = 0 6= f (L) = L we can’t expect term-by-term differentiation
to yield f ′(x) (and we observed this in the earlier example).
However, (6) does provide the expected (and correct) answer

f ′(x) ∼ 1
L

[f (L)− f (0)] +
∞∑

n=1

(
nπ
L

Bn +
2
L

[(−1)nf (L)− f (0)]

)
cos

nπx
L

=
1
L

[L− 0] +
∞∑

n=1

(
nπ
L

2L(−1)n+1

nπ
+

2
L

[(−1)nL− 0]

)
cos

nπx
L

= 1 +
∞∑

n=1

[
2(−1)n+1 + 2(−1)n︸ ︷︷ ︸

=0

]
cos

nπx
L

= 1
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Term-by-Term Differentiation of Fourier Series

Another Look at Separation of Variables: The
Eigenfunction Perspective

By starting our discussion of the solution of the heat equation with an
eigenfunction expansion we are able to obtain a justification for why
the separation of variables approach works.

Remark
The main advantage of taking this different point of view is that it can
be applied to nonhomogeneous problems as well (see HW 3.4.9 and
3.4.12).
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Term-by-Term Differentiation of Fourier Series

Example
Let’s once more solve the 1D heat equation

∂u
∂t

= k
∂2u
∂x2 , 0 < x < L, t > 0

u(0, t) = u(L, t) = 0
u(x ,0) = f (x).

We know that the eigenfunctions for this problem are{
sin

πx
L
, sin

2πx
L
, sin

3πx
L
, . . .

}
and therefore we make the Ansatz

u(x , t) =
∞∑

n=1

Bn(t) sin
nπx

L
.

Note the time-dependence of the Fourier sine coefficients.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)

The first thing to do is to enforce the initial condition u(x ,0) = f (x), i.e.,

f (x) ∼
∞∑

n=1

Bn(0) sin
nπx

L

with

Bn(0) =
2
L

∫ L

0
f (x) sin

nπx
L

dx , n = 1,2,3, . . .

Remark
Note that now we are approaching the problem from a different angle,
and so we don’t know yet whether u satisfies the heat equation.

fasshauer@iit.edu MATH 461 – Chapter 3 75

http://math.iit.edu
http://math.iit.edu/~fass


Term-by-Term Differentiation of Fourier Series

Example (cont.)
To check whether u satisfies the heat equation we compute all the
required partial derivatives using term-by-term differentiation:

u(x , t) ∼
∞∑

n=1

Bn(t) sin
nπx

L

=⇒ ∂u
∂x

(x , t) ∼
∞∑

n=1

nπ
L

Bn(t) cos
nπx

L
(7)

=⇒ ∂2u
∂x2 (x , t) ∼

∞∑
n=1

−
(nπ

L

)2
Bn(t) sin

nπx
L

(8)

and
∂u
∂t

(x , t) ∼
∞∑

n=1

B′n(t) sin
nπx

L
(9)
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Were all of these differentiations justified?

(7) was OK since we differentiated the sine series of a continuous
function (for fixed t) which satisfies u(0, t) = u(L, t) = 0.
(8) was OK since we differentiated the cosine series of a
continuous function (for fixed t).
(9) was questionable. So far we have no theorem covering this
case – see below.
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Term-by-Term Differentiation of Fourier Series

Example (cont.)
Using (8) and (9), u satisfies the heat equation if

∞∑
n=1

B′n(t) sin
nπx

L
= k

∞∑
n=1

[
−
(nπ

L

)2
Bn(t) sin

nπx
L

]
.

Comparing coefficients of sines of like frequencies we get an ODE for
the coefficients Bn:

B′n(t) = −k
(nπ

L

)2
Bn(t), n = 1,2,3, . . .

This ODE is easily solved and yields

Bn(t) = Bn(0)e−k( nπ
L )

2
t

which is the same answer we had earlier using separation of variables.
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Term-by-Term Differentiation of Fourier Series

We close the section with the theorem that justifies the derivation of (9)
above.

Theorem
If u = u(x , t) is a continuous function of t with time-dependent Fourier
series

u(x , t) = a0(t) +
∞∑

n=1

[
an(t) cos

nπx
L

+ bn(t) sin
nπx

L

]
then

∂u
∂t

(x , t) = a′0(t) +
∞∑

n=1

[
a′n(t) cos

nπx
L

+ b′n(t) sin
nπ
L

]
provided ∂u

∂t is piecewise smooth.
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Integration of Fourier Series

Theorem
The Fourier series of a piecewise smooth function f can always be
integrated term-by-term.
Moreover, the result is a continuous infinite series (but not necessarily
a Fourier series) which converges to the integral of f on the interval
[−L,L], i.e., if f has the Fourier series

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
, −L ≤ x ≤ L

then, for all x ∈ [−L,L], we have∫ x

−L
f (t)dt = a0(x +L)+

∞∑
n=1

[
anL
nπ

sin
nπx

L
+

bnL
nπ

(
cos nπ − cos

nπx
L

)]
. (10)
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Integration of Fourier Series

Remark
The integrals in the theorem need not be from −L to x.
They can also be from a to b, a,b ∈ [−L,L], since we can always write∫ b

a
. . . =

∫ −L

a
. . .+

∫ b

−L
. . . = −

∫ a

−L
. . .+

∫ b

−L
. . . ,

and the latter two integrals are covered by the formula in the theorem.
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Integration of Fourier Series

Before we prove the theorem we note the following facts:∫ x

−L
a0 dt = a0t

∣∣∣x
−L

= a0(x + L)∫ x

−L
cos

nπt
L

dt =
L

nπ
sin

nπt
L

∣∣∣∣x
−L

=
L

nπ
sin

nπx
L∫ x

−L
sin

nπt
L

dt = − L
nπ

cos
nπt
L

∣∣∣∣x
−L

=
L

nπ

(
cos nπ − cos

nπx
L

)
This shows that the coefficients in formula (10) indeed are likely
candidates for term-by-term integration of the Fourier series.

fasshauer@iit.edu MATH 461 – Chapter 3 83

http://math.iit.edu
http://math.iit.edu/~fass


Integration of Fourier Series

Proof.
We begin by defining the function F as

F (x) =

∫ x

−L
f (t) dt .

Since we assumed f to be piecewise smooth, F is continuous.
Its Fourier series is continuous if and only if F (−L) = F (L).
However,

F (−L) =

∫ −L

−L
f (t) dt = 0

F (L) =

∫ L

−L
f (t) dt = 2a0L,

where a0 is one of the Fourier coefficients of f . These are in general
not the same. Therefore, the Fourier series of F is not continuous in
general, and we cannot assume that F (x) equals its Fourier series for
−L ≤ x ≤ L.
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Integration of Fourier Series

Proof (cont.)
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In addition to F (x) =
∫ x
−L f (t) dt we

now also define

H(x) = a0(x + L)

and

G(x) = F (x)− H(x).

Clearly, H denotes the line passing
through (−L,0) and (L,2a0L).

As a consequence we have
G(−L) = G(L) = 0 (since F (−L) = 0 and F (L) = 2a0L),
G is continuous (since F and H are)

so that G(x) equals its Fourier series on [−L,L].
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Integration of Fourier Series

Proof (cont.)

Let’s write the Fourier series of G in the form

G(x) = A0 +
∞∑

n=1

[
An cos

nπx
L

+ Bn sin
nπx

L

]
with (remember that G(x) = F (x)− H(x) = F (x)− a0(x + L))

A0 =
1
2L

∫ L

−L
[F (x)− a0(x + L)] dx

An =
1
L

∫ L

−L
[F (x)− a0(x + L)] cos

nπx
L

dx

Bn =
1
L

∫ L

−L
[F (x)− a0(x + L)] sin

nπx
L

dx

and let’s compute A0, An and Bn.
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Integration of Fourier Series

Proof (cont.)

An =
1
L

∫ L

−L
[F (x)− a0(x + L)] cos

nπx
L

dx

=
1
L

∫ L

−L
[F (x)− a0L]︸ ︷︷ ︸
=u, du=f (x)dx

cos
nπx

L︸ ︷︷ ︸
=dv , v= L

nπ sin nπx
L

dx − 1
L

∫ L

−L
a0x cos

nπx
L

dx︸ ︷︷ ︸
=0, odd

=
1
L

[
(F (x)− a0L)

L
nπ

sin
nπx

L︸ ︷︷ ︸
→0

∣∣∣∣∣
L

−L

− L
nπ

∫ L

−L
f (x) sin

nπx
L

dx︸ ︷︷ ︸
=Lbn

]

= − L
nπ

bn

Bn =
L

nπ
an is computed similarly (see HW 3.5.5)
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Integration of Fourier Series

Proof (cont.)

To compute A0 we note that

0 = G(L) = A0 +
∞∑

n=1

[
An cos

nπL
L

+ Bn sin
nπL

L︸ ︷︷ ︸
=0

]

Therefore

A0 = −
∞∑

n=1

An cos nπ =
∞∑

n=1

L
nπ

bn cos nπ.

Putting everything together we get

F (x) = H(x) + G(x)

= a0(x + L) + A0 +
∞∑

n=1

An cos
nπx

L
+ Bn sin

nπx
L

which matches the claim of the theorem if we use the representations
of A0, An and Bn. �
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Integration of Fourier Series

Example
Integrate the following Fourier cosine series (see (4)) from 0 to x :

x =
L
2
− 4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πx
L

Solution
We immediately have ∫ x

0
t dt =

x2

2

and ∫ x

0

L
2

dt =
Lx
2
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Integration of Fourier Series

Solution (cont.)
The remaining part becomes

4L
π2

∞∑
k=1

1
(2k − 1)2

∫ x

0
cos

(2k − 1)πt
L

dt =
4L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πt
L

∣∣∣∣∣
x

0

=
4L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πx
L

Putting all three parts together we have

x2 = Lx − 8L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πx
L

.

Note that this is in agreement with the statement of the theorem. Due
to the presence of the linear term Lx this is not a Fourier (sine) series.
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Integration of Fourier Series

Solution (cont.)
We can interpret

x2 = Lx − 8L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πx
L

differently. Namely, we do have the following two sine series:

Lx − x2 =
8L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πx
L

and, using the Fourier sine series of f (x) = x (see (1)),

x2 = L
2L
π

∞∑
n=1

(−1)n+1

k
sin

nπx
L
− 8L2

π3

∞∑
k=1

1
(2k − 1)3 sin

(2k − 1)πx
L
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Integration of Fourier Series

Example
Use the fact – established earlier (see (5)) – that

1 =
4
π

∞∑
k=1

1
2k − 1

sin
(2k − 1)πx

L
, 0 < x < L

to show that
∞∑

k=1

1
(2k − 1)2 = 1 +

1
32 +

1
52 + . . . =

π2

8
.
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Integration of Fourier Series

Solution
The main idea is to integrate the given identity from 0 to x . For the
left-hand side we have ∫ x

0
1 dt = x ,

while the right-hand side is∫ x

0

4
π

∞∑
k=1

1
2k − 1

sin
(2k − 1)πt

L
dt =

4
π

∞∑
k=1

1
2k − 1

∫ x

0
sin

(2k − 1)πt
L

dt

= −4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πt
L

∣∣∣∣x
0

=
4L
π2

∞∑
k=1

[
1

(2k − 1)2 −
1

(2k − 1)2 cos
(2k − 1)πx

L

]
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Integration of Fourier Series

Solution (cont.)
Therefore, splitting into two series,

x =
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πx
L

.

This is a cosine series with constant term

A0 =
4L
π2

∞∑
k=1

1
(2k − 1)2 =

1
L

∫ L

0
x dx =

L
2
,

and we can now conclude that
∞∑

k=1

1
(2k − 1)2 =

π2

4L
L
2

=
π2

8
.
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Integration of Fourier Series

Solution (cont.)
Alternatively, we could have evaluated the series expansion

x =
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πx
L

for some special value of x . For example,
for x = L we get

L =
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)πL
L

=
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos(2k − 1)π︸ ︷︷ ︸

=−1

so that

L = 2
4L
π2

∞∑
k=1

1
(2k − 1)2 ⇐⇒

∞∑
k=1

1
(2k − 1)2 =

π2

8
.
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Integration of Fourier Series

Solution (cont.)

For x = L
2 we get

L
2

=
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos

(2k − 1)π L
2

L

=
4L
π2

∞∑
k=1

1
(2k − 1)2 −

4L
π2

∞∑
k=1

1
(2k − 1)2 cos(2k − 1)

π

2︸ ︷︷ ︸
=0

so that

L
2

=
4L
π2

∞∑
k=1

1
(2k − 1)2 ⇐⇒

∞∑
k=1

1
(2k − 1)2 =

π2

8
.
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Integration of Fourier Series

Example
The Basel problem, first proved by
Leonhard Euler in 1735:

∞∑
n=1

1
n2 =

π2

6

One can prove this as we did for the
squares of odd integers above. Here we
evaluate the Fourier series of f (x) = x2,

x2 =
L2

3
+

4L2

π2

∞∑
n=1

(−1)n

n2 cos
nπx

L
,

at x = L.

See [Proofs from THE BOOK] for three different proofs.
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Complex Form of Fourier Series

Fourier series are often expressed in terms of complex exponentials
instead of sines and cosines.
The main ingredient for understanding this translation in notation is
Euler’s formula

eiθ = cos θ + i sin θ.

This, of course, implies

e−iθ = cos θ − i sin θ,

and so

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i
.
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Complex Form of Fourier Series

We can therefore rewrite the Fourier series

f (x) ∼ a0 +
∞∑

n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
as

f (x) ∼ a0 +
∞∑

n=1

[
an

ei nπx
L + e−i nπx

L

2
+ bn

ei nπx
L − e−i nπx

L

2i

]

= a0 +
1
2

∞∑
n=1

[(
an +

bn

i

)
ei nπx

L +

(
an −

bn

i

)
e−i nπx

L

]
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Complex Form of Fourier Series

We break this into two series and use 1
i = −i to arrive at

f (x) ∼ a0 +
1
2

∞∑
n=1

(an − ibn) ei nπx
L +

1
2

∞∑
n=1

(an + ibn) e−i nπx
L

Now we perform an index transformation, n→ −n, on the first series to
get

f (x) ∼ a0 +
1
2

−∞∑
n=−1

(a−n − ib−n) e−i nπx
L +

1
2

∞∑
n=1

(an + ibn) e−i nπx
L

Note that, using the symmetries of cosine and sine,

a−n =
1
L

∫ L

−L
f (x) cos

(−n)πx
L

dx = an

b−n =
1
L

∫ L

−L
f (x) sin

(−n)πx
L

dx = −bn
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Complex Form of Fourier Series

We can therefore rewrite

f (x) ∼ a0 +
1
2

−∞∑
n=−1

(a−n − ib−n) e−i nπx
L +

1
2

∞∑
n=1

(an + ibn) e−i nπx
L

as

f (x) ∼ a0 +
1
2

−∞∑
n=−1

(an + ibn) e−i nπx
L +

1
2

∞∑
n=1

(an + ibn) e−i nπx
L

If we introduce new coefficients

c0 = a0 and cn =
an + ibn

2
then we get the exponential form of the Fourier series

f (x) ∼
∞∑

n=−∞
cne−i nπx

L

with Fourier coefficients

c0 =
1
2L

∫ L

−L
f (x) dx
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Complex Form of Fourier Series

and

cn =
an + ibn

2

=
1
2L

[∫ L

−L
f (x) cos

nπx
L

dx + i
∫ L

−L
f (x) sin

nπx
L

dx

]

=
1
2L

∫ L

−L
f (x)

[
cos

nπx
L

+ i sin
nπx

L

]
dx

=
1
2L

∫ L

−L
f (x)ei nπx

L dx

Note that this formula also gives the correct value for c0.

Remark
Sometimes the formula for the Fourier coefficients cn is referred to as
the finite Fourier transform of f .
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