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Mathematical Modeling General Situation

Physical problem −→ mathematical model −→ approximate solution of
problem (analytic or numeric)

Example

Growth of bacteria is often modeled using dP
dt = kP. The analytic

solution is P(t) = P0ekt . We could also solve the DE numerically (see
MATH 350).

Why "approximate"?
model usually idealized/simplified (e.g., infinite resources above;
relativity theory applies to large scale problems, quantum
mechanics to small scales→ want unified theory (string theory?))
modeling errors possible (e.g., different assumptions on how
traffic or heat flows)
data obtained from physical problem could be inaccurate
(measurement errors)
may need to truncate infinite series solutions to get practical
answer
possible roundoff or truncation errors in numerical solutions
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Mathematical Modeling Example 1: Traffic Flow

Physical Problem

Math for traffic info services (e.g., GCM Travel)
fasshauer@iit.edu MATH 461 – Chapter 1 5

Cars traveling on the Chicago highway system.
How long does it take to get from A to B? How fast are cars able to
travel at any specific position and time?

http://math.iit.edu
http://www.travelmidwest.com/lmiga/janeByrneInterchangeCameras.jsp
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Mathematical Modeling Example 1: Traffic Flow

Mathematical Model

Cars travel on an idealized one-lane road (no on- or off-ramps, no
passing) – lots of simplification.
Consider a bunch of cars on our road. For each instance in time, t ,
each car will be at a specific position xi(t) moving with velocity vi(t),
and we have

vi(t) =
dxi

dt
(t), i = 1, . . . ,N.

If we view the traffic flow as a whole then it’s more appropriate to
introduce a velocity field v such that v(x , t) denotes the velocity of the
traffic at position x and time t .
Then the velocity of a car at position x(t) (starting out at x(t0) = x0) is
given by the solution of the first-order ODE

dx
dt

(t) = v (x(t), t) , x(t0) = x0.

See the example in the Mathematica notebook Traffic.nb.
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Mathematical Modeling Example 1: Traffic Flow

Refined Mathematical Model

In addition to the velocity field, we now also consider
the traffic density ρ(x , t), i.e., the number of cars per unit length at
any position x and time t [cars/km],
the traffic flow rate or flux φ(x , t), i.e., the number of cars per unit
time passing at position x and time t [cars/h].

The two are actually related via the velocity field:

φ(x , t) = ρ(x , t)v(x , t)
[

cars
h

=
cars
km

km
h

]

How might we be able to compute one of these, say the density?
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Mathematical Modeling Example 1: Traffic Flow

The fundamental assumption that allows us to build a (differential
equation) model is a conservation law. We assume that no cars are
added or removed between the starting point A and the ending point B.

Therefore,{
change in # cars on AB

}
= {# cars entering at A− # cars leaving at B}

or
d
dt

N(t) = φ(A, t)− φ(B, t), (1)

where

N(t) =

∫ B

A
ρ(x , t)dx . (2)
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Mathematical Modeling Example 1: Traffic Flow

Combining (1) and (2) we get

d
dt

∫ B

A
ρ(x , t)dx = φ(A, t)− φ(B, t).

Using the FT of Calc we can express the difference in fluxes as

φ(B, t)− φ(A, t) =

∫ B

A

∂

∂x
φ(x , t)dx .

Therefore, assuming the density ρ is continuous and A, B are const.,∫ B

A

∂

∂t
ρ(x , t)dx = −

∫ B

A

∂

∂x
φ(x , t)dx

⇐⇒
∫ B

A

[
∂

∂t
ρ(x , t) +

∂

∂x
φ(x , t)

]
dx = 0

This gives rise to the partial differential equation (see Section 12.6 of
[Haberman])

∂
∂t ρ(x , t) = − ∂

∂xφ(x , t)

or ∂
∂t ρ(x , t) = − ∂

∂x [ρ(x , t)v(x , t)]
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Mathematical Modeling Example 1: Traffic Flow

Even though the traffic flow equation

∂

∂t
ρ(x , t) = − ∂

∂x
[ρ(x , t)v(x , t)]

is a first-order PDE it is more complicated to study than the
second-order equations we will be looking at in this course since the
traffic flow equation may develop a discontinuous solution or shock –
even for a smooth initial condition (see the image in Traffic.nb).

The technique required to solve the traffic flow equation is discussed in
MATH 489.

A nice Java applet simulating traffic flow (including shocks) can be
found here and an html5 version here.
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Mathematical Modeling Summary

Modeling Summary

There are many other kinds of mathematical modeling situations such
as

data fitting (e.g., find the best approximation – from a certain
linear/nonlinear function class – to given measurement data)
parameter estimation (e.g., find the best parameters for one of the
models used earlier – drag coefficient, birth/death rate, etc.)
statistical/probabilistic modeling (e.g., non-deterministic models in
finance or weather prediction)
discrete modeling (e.g., determining the best location of a fire
department or hospital on a network of roads)
geometric modeling (e.g., used for CAD systems)
asymptotic modeling (focus on extreme or limiting cases, can
usually be done analytically)

An entertaining overview of the field of mathematical modeling is
provided by Charlie’s activities on the TV show NUMB3RS.
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Introduction

Heat Flow

We will formulate a model which describes how the temperature u
changes over time t in a region (1D→ x , 2D→ (x , y), or 3D
→ (x , y , z)).

Since u is always at least a function of two variables, e.g., u = u(x , t),
this will lead to a partial differential equation or PDE involving the
unknown function u along with its (partial) derivatives with respect to
space and time, i.e., ut ,ux ,uy ,uxx , etc.

Our models will also require certain initial and boundary conditions
such as the entire temperature distribution at the beginning and the
temperature on the boundary at any time t .
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unknown function u along with its (partial) derivatives with respect to
space and time, i.e., ut ,ux ,uy ,uxx , etc.

Our models will also require certain initial and boundary conditions
such as the entire temperature distribution at the beginning and the
temperature on the boundary at any time t .
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Introduction

We can model heat transfer in basically two different forms:

conduction – molecules stay put and heat energy is transferred to
neighboring molecules (in a solid body)

convection – molecules themselves move and generate heat energy
(mostly in fluids or gases)

We will focus on heat conduction.
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Heat Conduction in a 1D Rod

Outline

1 Mathematical Modeling

2 Introduction

3 Heat Conduction in a 1D Rod

4 Initial and Boundary Conditions

5 Equilibrium (or steady-state) Temperature Distribution

6 Derivation of the Heat Equation in 2D and 3D
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Heat Conduction in a 1D Rod

Our derivation will consist of two steps:

1 We use an energy conservation principle to derive a PDE for the
heat energy in a one-dimensional rod.

2 Then we use Fourier’s law of heat conduction to relate heat energy
to temperature to obtain the so-called heat equation, a PDE that
models the temperature in the rod at any position x and time t .
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Heat Conduction in a 1D Rod A PDE for heat energy

We consider a rod of length L and cross section A

To understand the distribution of heat energy in the rod we consider
the heat energy density e = e(x , t), i.e., the heat energy per unit length
at position x and time t .

Remark
We assume that e depends only on x and t. This means that the rod is
insulated (except possibly at the ends) so that heat can only flow in the
x-direction.
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Heat Conduction in a 1D Rod A PDE for heat energy

Similar to the traffic flow problem we also consider:
The heat flux or heat flow rate φ(x , t), i.e., the amount of heat
energy per unit time flowing (from left to right) through a unit
cross-sectional area at x . Thus, φ(x , t) > 0 denotes flow to right
and φ(x , t) < 0 flow to left.

Possible heat sources Q(x , t), i.e., the amount of heat energy per
unit volume generated per unit time.
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Heat Conduction in a 1D Rod A PDE for heat energy

Conservation of Energy

This is the major physical assumption used:

{Rate of change of heat energy between x = a and x = b}
=

{rate of heat energy flowing through ends}
+

{rate of heat energy generated inside segment of rod}

Remark
Note that all of these are rates of change per unit of time.
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Heat Conduction in a 1D Rod A PDE for heat energy

We express the ingredients for the conservation of energy principle:

Total heat energy between x = a and x = b: A
∫ b

a
e(x , t)dx ,

so that change of heat energy:
d
dt

[
A
∫ b

a
e(x , t)dx

]
.

Rate of heat energy flowing through ends: Aφ(a, t)− Aφ(b, t).

Rate of heat energy generated inside: A
∫ b

a
Q(x , t)dx .

Together (conservation of energy – integral form):

d
dt

∫ b

a
e(x , t)dx = φ(a, t)− φ(b, t) +

∫ b

a
Q(x , t)dx (3)
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Heat Conduction in a 1D Rod A PDE for heat energy

We can further manipulate (3):
First, provided that e is continuous and a, b are const. wrt t ,

d
dt

∫ b

a
e(x , t)dx =

∫ b

a

∂

∂t
e(x , t)dx .

Second, by the FT of Calculus (provided φ ∈ C1),

φ(a, t)− φ(b, t) =

∫ a

b

∂

∂x
φ(x , t)dx = −

∫ b

a

∂

∂x
φ(x , t)dx .

So conservation of energy (3) becomes∫ b

a

∂

∂t
e(x , t)dx = −

∫ b

a

∂

∂x
φ(x , t)dx +

∫ b

a
Q(x , t)dx

or ∫ b

a

[
∂

∂t
e(x , t) +

∂

∂x
φ(x , t)−Q(x , t)

]
dx = 0.
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Heat Conduction in a 1D Rod A PDE for heat energy

Since ∫ b

a

[
∂

∂t
e(x , t) +

∂

∂x
φ(x , t)−Q(x , t)

]
dx = 0

holds for arbitrary a,b we have

∂

∂t
e(x , t) +

∂

∂x
φ(x , t)−Q(x , t) = 0

or

Conservation of energy (differential form):

∂

∂t
e(x , t) = − ∂

∂x
φ(x , t) + Q(x , t) (4)

Remark
Equation (3) is more general than (4) since it also applies if e and φ
are not continuous.
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Heat Conduction in a 1D Rod The heat equation via Fourier’s law of heat conduction

From Heat Energy to Temperature

We now introduce the following physical quantities:
the temperature u(x , t) at position x and time t ,

the specific heat c(x) at position x (assumed not to vary over time
t), i.e., the amount of heat energy required to raise the
temperature of one unit of mass by one unit of temperature,
the mass density ρ(x) at position x (assumed not to vary over time
t), i.e., the mass per unit volume.

These quantities are all related via the energy density. Namely,

e(x , t) = c(x)ρ(x)u(x , t).

Units: [
J
m

]
=

[
J

kg ◦C

] [
kg
m

]
[◦C]
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Heat Conduction in a 1D Rod The heat equation via Fourier’s law of heat conduction

We can now modify the conservation of energy equation (4)

∂

∂t
e(x , t) = − ∂

∂x
φ(x , t) + Q(x , t)

to become

∂

∂t
[c(x)ρ(x)u(x , t)] = − ∂

∂x
φ(x , t) + Q(x , t)

or
c(x)ρ(x)

∂

∂t
u(x , t) = − ∂

∂x
φ(x , t) + Q(x , t) (5)

Remark
This is still not ideal since it involves both temperature and energy flux.
We need to unify further.
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Heat Conduction in a 1D Rod The heat equation via Fourier’s law of heat conduction

Fourier’s Law of Heat Conduction

The final physical principle that makes everything come together.

Physical assumptions:
If the temperature is constant, then no heat energy flows, i.e.,
φ = 0.
If there are temperature differences at different positions, then
heat energy flows from hot to cold.
The greater these differences, the greater the flux, i.e., φ ∝ ∂

∂x u.
Heat flow depends on the specific material of the rod.

The resulting formula is

φ(x , t) = −K0(x)
∂

∂x
u(x , t),

where the thermal conductivity K0 depends on the material.

Remark
The “−” is needed since φ > 0 indicates flow from left to right, but energy also
flows from hot to cold and ∂

∂x u(x , t) < 0 if it is warmer on the left.
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Heat Conduction in a 1D Rod The heat equation via Fourier’s law of heat conduction

Using Fourier’s law of heat conduction

φ(x , t) = −K0(x)
∂

∂x
u(x , t),

we can rewrite (5) as

c(x)ρ(x)
∂

∂t
u(x , t) =

∂

∂x

[
K0(x)

∂

∂x
u(x , t)

]
+ Q(x , t).

This is the heat equation in rather general form.

In most cases we will assume c, ρ,K0 to be constant, i.e., we will use a
uniform material. Then we get

cρ
∂

∂t
u(x , t) = K0

∂2

∂x2 u(x , t) + Q(x , t)

or
∂

∂t
u(x , t) = k

∂2

∂x2 u(x , t) + q(x , t),

where k = K0
cρ , the thermal diffusivity and q(x , t) = Q(x ,t)

cρ .
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Heat Conduction in a 1D Rod The heat equation via Fourier’s law of heat conduction

Finally, if no sources are present, i.e., Q(x , t) = 0, then

∂

∂t
u(x , t) = k

∂2

∂x2 u(x , t) (6)

is the standard heat equation or diffusion equation.

Remark
The same form of equation also applies to many other situations, such
as diffusion of pollutants, etc.
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Initial and Boundary Conditions

Initial Condition

In order to obtain a unique solution for a differential equation one
needs to specify additional conditions – usually one for every
derivative.

Since the heat equation contains
∂u
∂t

we usually add an initial condition
such as

u(x ,0) = f (x), 0 ≤ x ≤ L (initial temperature distribution).

The two conditions demanded by
∂2u
∂x2 are discussed next.

Remark
As we will see later, one cannot just add any set of conditions. They
should be chosen such that the problem is well-posed, i.e., it should
allow for the existence of a unique solution that depends continuously
on the given conditions.
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Initial and Boundary Conditions

Boundary Conditions

We will consider three types of boundary conditions.

Controlled end temperature: e.g., using baths at the ends

u(0, t) = uB1(t), t > 0,
u(L, t) = uB2(t), t > 0.

Insulated ends: Since the heat flow is φ(x , t) = −K0
∂u
∂x (x , t) insulation

(i.e, no heat flow) implies ∂u
∂x = 0. Therefore,

∂u
∂x

(0, t) =
∂u
∂x

(L, t) = 0, t > 0.

Newton’s law of cooling: e.g., cooler air is passed by ends of rod
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Initial and Boundary Conditions

For Newton’s law of cooling we assume there is only partial insulation
governed by a positive heat transfer (or convection) coefficient H, e.g.,

φ(0, t) = −H
[
u(0, t)− uB1(t)

]
(Newton’s law)

Note “−” which indicates that – for a rod that is hotter than its
environment – heat flow is negative, i.e., flows to the cooler
environment (on the “left”).

In terms of u we get (Fourier’s law)

∂u
∂x

(0, t) =
H
K0

[
u(0, t)− uB1(t)

]
At the other end

∂u
∂x

(L, t) = − H
K0

[
u(L, t)− uB2(t)

]
We also note that

H → 0 corresponds to perfect insulation
H →∞ corresponds to controlled temperature
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Equilibrium (or steady-state) Temperature Distribution

We are now ready to solve our first heat equation PDEs. We
consider different types of boundary conditions

fixed end temperature
insulated ends

under the fundamental simplifying assumption that we have
observed the temperature distribution process for a long time and
it has settled down to an equilibrium temperature distribution, i.e.,
the temperature no longer changes with time.
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Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

Controlled End Temperature
Problem:

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x) (initial condition)
u(0, t) = T1(t) (left-end BC)
u(L, t) = T2(t) (right-end BC)

This is easy to solve if there is no time dependence, i.e., if
∂u
∂t ≡ 0 =⇒ equilibrium

Then
∂2u
∂x2 (x , t) = 0 or really just u′′(x) = 0

The IC becomes meaningless1, and the BCs become

u(0) = T1, u(L) = T2.

1but should be consistent with the BCs

fasshauer@iit.edu MATH 461 – Chapter 1 34

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

Controlled End Temperature
Problem:

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x) (initial condition)
u(0, t) = T1(t) (left-end BC)
u(L, t) = T2(t) (right-end BC)

This is easy to solve if there is no time dependence, i.e., if
∂u
∂t ≡ 0 =⇒ equilibrium

Then
∂2u
∂x2 (x , t) = 0 or really just u′′(x) = 0

The IC becomes meaningless1, and the BCs become

u(0) = T1, u(L) = T2.

1but should be consistent with the BCs

fasshauer@iit.edu MATH 461 – Chapter 1 34

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

Controlled End Temperature
Problem:

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x) (initial condition)
u(0, t) = T1(t) (left-end BC)
u(L, t) = T2(t) (right-end BC)

This is easy to solve if there is no time dependence, i.e., if
∂u
∂t ≡ 0 =⇒ equilibrium

Then
∂2u
∂x2 (x , t) = 0 or really just u′′(x) = 0

The IC becomes meaningless1, and the BCs become

u(0) = T1, u(L) = T2.

1but should be consistent with the BCs

fasshauer@iit.edu MATH 461 – Chapter 1 34

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

Controlled End Temperature
Problem:

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x) (initial condition)
u(0, t) = T1(t) (left-end BC)
u(L, t) = T2(t) (right-end BC)

This is easy to solve if there is no time dependence, i.e., if
∂u
∂t ≡ 0 =⇒ equilibrium

Then
∂2u
∂x2 (x , t) = 0 or really just u′′(x) = 0

The IC becomes meaningless1, and the BCs become

u(0) = T1, u(L) = T2.

1but should be consistent with the BCs
fasshauer@iit.edu MATH 461 – Chapter 1 34

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

We solve u′′(x) = 0 by integrating twice, i.e.,

u(x) = C1x + C2

and use the BCs to determine C1,C2:

u(0) = T1 = C2

u(L) = T2 = C1L + T1 ⇒ C1 =
T2 − T1

L

Therefore
u(x) = T1 +

T2 − T1

L
x ,

i.e., the temperature distribution interpolates linearly between the fixed
end temperatures.
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Equilibrium (or steady-state) Temperature Distribution Controlled End Temperature

Remark
We will later see that the time dependent PDE problem

∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x)

with time independent BCs

u(0, t) = T1, u(L, t) = T2

has (in the limit – for very large time) the steady-state solution we just
computed, so in this case one can just solve the simple equilibrium
problem from the previous slide.

fasshauer@iit.edu MATH 461 – Chapter 1 36

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

Insulated Boundaries

Now we have

Problem:
∂u
∂t

(x , t) = k
∂2u
∂x2 (x , t)

u(x ,0) = f (x) (initial condition)
∂u
∂x

(0, t) =
∂u
∂x

(L, t) = 0 (BCs)

The steady-state (∂u
∂t ≡ 0) ODE problem then is

u′′(x) = 0
(7)

u′(0) = u′(L) = 0

Its general solution (again via integration) is

u(x) = C1x + C2.
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Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.
One might expect that the initial temperature distribution f (x)
should affect C2.
In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.
One might expect that the initial temperature distribution f (x)
should affect C2.
In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.
One might expect that the initial temperature distribution f (x)
should affect C2.
In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.

One might expect that the initial temperature distribution f (x)
should affect C2.
In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.
One might expect that the initial temperature distribution f (x)
should affect C2.

In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

If we try to use our BCs to determine C1,C2 we note that either one of
the BCs implies

C1 = 0 (since u′(x) = C1)

This leaves us with a constant temperature distribution

u(x) = C2.

But which constant C2 specifies the “correct” temperature?

Remark
Note that the ODE problem (7) is not well posed. It does not have
a unique solution.
One might expect that the initial temperature distribution f (x)
should affect C2.
In general one should not expect u(x) = f (x), but rather that the
initial distribution somehow “levels out”.

fasshauer@iit.edu MATH 461 – Chapter 1 38

http://math.iit.edu
http://math.iit.edu/~fass


Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

Since thermal energy is conserved inside the rod, we can go back to
the integral form of the conservation of energy law (3):

d
dt

∫ L

0
e(x , t)dx = φ(0, t)− φ(L, t) +

∫ L

0
Q(x , t)dx

In terms of u this becomes (using e = cρu, Fourier’s law and assuming
Q = 0)

so that
d
dt

∫ L

0
cρu(x , t)dx = 0

or ∫ L

0
cρu(x , t)dx = const (total heat energy)
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Equilibrium (or steady-state) Temperature Distribution Insulated Boundaries

Since the total heat energy is constant for all time we must have

{initial energy} = {equilibrium energy}

or ∫ L

0
f (x)dx =

∫ L

0
C2dx

= LC2

so that

C2 =
1
L

∫ L

0
f (x)dx .

In summary, we get

u(x) =
1
L

∫ L

0
f (x)dx ,

i.e., the steady-state temperature distribution is the average of the
initial temperature distribution.
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We will discuss the 3D case since it is more realistic than 2D (whose
derivation is quite similar).

In order to understand the following you should review volume and
surface integrals from Calculus III (mostly Ch. 16 in [Stewart]).
Notation and quick refresher:

R will denote the 3D region under
consideration.
The heat flux φ is now a vector field,
i.e., φ = φ(x , y , z, t). It specifies the
amount of heat energy per unit time
flowing through a unit of area of the
boundary surface ∂R in the outward
direction.
The unit outer normal vector to R is
denoted by n̂.
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We will need only the normal component of the flux, i.e., the
component of φ along n̂.

From Calc III:
Projection (component of φ along n̂):

projn̂φ = ‖φ‖ cos θ

Relation between angle and dot product:

cos θ =
φ · n̂
‖φ‖ ‖n̂‖︸︷︷︸

=1

Therefore

projn̂φ = φ · n̂ (8)
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Derivation of the Heat Equation in 2D and 3D

Of fundamental importance is also

Theorem (Divergence/Gauss/Ostrogradsky)

Suppose R is a bounded region in R3 with piecewise smooth boundary
∂R. If f = (f1, f2, f3) ∈ C1 in an open region that contains R then∫∫∫

R

∇ · f (x , y , z) dV =

∫∫
∂R

f (x , y , z) · n̂(x , y , z) dS,

where ∇ · f = ∂
∂x f1 + ∂

∂y f2 + ∂
∂z f3 = div f and n̂(x , y , z) is the unit

outward normal vector to R at the point (x , y , z) of ∂R.

Remark
This is the 3D-analogue of the FT of Calculus.
In 2D we would be using Green’s theorem.
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Derivation of the Heat Equation in 2D and 3D

Conservation of Energy (again)

{Rate of change of heat energy}
=

{rate of heat energy generated inside of R}
+

{rate of heat energy flowing through boundary surface}

We need to derive formulas for each one of these three parts.

fasshauer@iit.edu MATH 461 – Chapter 1 45

http://math.iit.edu
http://math.iit.edu/~fass


Derivation of the Heat Equation in 2D and 3D

Conservation of Energy (again)

{Rate of change of heat energy}
=

{rate of heat energy generated inside of R}
+

{rate of heat energy flowing through boundary surface}

We need to derive formulas for each one of these three parts.

fasshauer@iit.edu MATH 461 – Chapter 1 45

http://math.iit.edu
http://math.iit.edu/~fass


Derivation of the Heat Equation in 2D and 3D

Total heat energy:∫∫∫
R

e(x , y , z, t) dV =

∫∫∫
R

c(x , y , z)ρ(x , y , z)u(x , y , z, t) dV

Therefore, the rate of change of heat energy is

d
dt

∫∫∫
R

c(x , y , z)ρ(x , y , z)u(x , y , z, t) dV (9)

Similarly, the rate of heat energy generated inside of R is∫∫∫
R

Q(x , y , z, t) dV (10)
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Derivation of the Heat Equation in 2D and 3D

Using only the normal component of the heat flux (see (8)) we get the
rate of heat energy flowing through boundary surface:

−
∫∫
∂R

φ(x , y , z, t) · n̂(x , y , z) dS (11)

Remark
The “−” sign appears since outward flow φ is positive, but such a flow
reduces the heat energy.
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Derivation of the Heat Equation in 2D and 3D

Combining (9–11) the conservation of energy principle gives:

d
dt

∫∫∫
R

cρu dV = −
∫∫
∂R

φ · n̂ dS +

∫∫∫
R

Q dV (12)

In order to get the heat equation in PDE form we need to convert the
surface integral ∫∫

∂R

φ · n̂ dS

into a volume integral.
This is where we will use the divergence theorem, i.e.,∫∫

∂R

φ · n̂ dS =

∫∫∫
R

∇ · φdV (13)
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Derivation of the Heat Equation in 2D and 3D

Using the divergence theorem for φ, (13), equation (12)

d
dt

∫∫∫
R

cρu dV = −
∫∫
∂R

φ · n̂ dS +

∫∫∫
R

Q dV

now becomes∫∫∫
R

cρ
∂

∂t
u dV = −

∫∫∫
R

∇ · φdV +

∫∫∫
R

Q dV

or ∫∫∫
R

[
cρ

∂

∂t
u +∇ · φ−Q

]
dV = 0.

Since this holds for arbitrary R we get (compare with (5))

c(x , y , z)ρ(x , y , z)
∂

∂t
u(x , y , z, t) = −∇ · φ(x , y , z, t) + Q(x , y , z, t).
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Derivation of the Heat Equation in 2D and 3D

As in 1D we now use Fourier’s law of heat conduction:

In its 3D form the flux φ is proportional to the temperature gradient
∇u =

(
∂
∂x u, ∂∂y u, ∂∂z u

)
, i.e.,

φ(x , y , z, t) = −K0(x , y , z)∇u(x , y , z, t)

and so we get the

Heat equation in 3D:

cρ
∂

∂t
u = ∇ · (K0∇u) + Q (14)
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Derivation of the Heat Equation in 2D and 3D

Special case:
Q = 0 with c, ρ,K0 = const results in

∂

∂t
u = k∇2u, k =

K0

cρ
,

or
∂

∂t
u = k∆u,

where the Laplacian is defined as

∆u = ∇2u =
∂2

∂x2 u +
∂2

∂y2 u +
∂2

∂z2 u

or
∆u = ∇ · ∇u =

∂

∂x
∂u
∂x

+
∂

∂y
∂u
∂y

+
∂

∂z
∂u
∂z

i.e.,
∆u = div(grad u).
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Derivation of the Heat Equation in 2D and 3D

Initial and Boundary Conditions

Initial temperature distribution:

u(x , y , z,0) = f (x , y , z) for (x , y , z) ∈ R

Boundary conditions
Prescribed boundary temperature:

u(x , y , z, t) = T (x , y , z, t) for (x , y , z) ∈ ∂R

Perfectly insulated boundary: this means no heat flux through the
boundary (normal component of φ is zero), i.e., φ · n̂ = 0. Using
Fourier’s law (φ = −K0∇u) we have for all (x , y , z) ∈ ∂R

φ · n̂ = 0 ⇐⇒ ∇u · n̂ = 0,

i.e., the normal derivative of u is zero.
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Derivation of the Heat Equation in 2D and 3D

Boundary conditions (cont.)
Newton’s law of cooling:

∇u · n̂ = − H
K0

[u − uB] on the boundary ∂R

Remark

If u > uB then heat flows outward, i.e., the temperature gradient is negative.
Thus we need to have H > 0 for everything to make sense.

Note that n̂ = i and n̂ = −i correspond to 1D end conditions.
For example,

∇u · i =
(
∂u
∂x

,
∂u
∂y

,
∂u
∂z

)
· (1, 0, 0) = ∂u

∂x
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Derivation of the Heat Equation in 2D and 3D

Steady State Problems
As in 1D, steady state is characterized by ∂

∂t u ≡ 0.

Therefore the heat equation (14)

cρ
∂

∂t
u = ∇ · (K0∇u) + Q

becomes
∇ · (K0∇u) = −Q.

If K0 = const, then we get

Poisson’s equation

∇2u(x , y , z, t) = −Q(x , y , z, t)
K0

.

If in addition Q = 0, then we get

Laplace’s equation

∇2u(x , y , z, t) = 0.
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Poisson’s equation

∇2u(x , y , z, t) = −Q(x , y , z, t)
K0

.

If in addition Q = 0, then we get

Laplace’s equation

∇2u(x , y , z, t) = 0.
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Derivation of the Heat Equation in 2D and 3D

Remark
Now the steady state equations are PDEs, and we need to
postpone their solution until later.

In 2D these equations look the same, except that we use the 2D
Laplacian

∇2u =
∂2u
∂x2 +

∂2u
∂y2 .
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Derivation of the Heat Equation in 2D and 3D

Other Coordinate Systems

The Laplacian of u
∇2u

plays a central role in the formulation of the heat equation.

We often have to deal with regions R that are better expressed in
cylindrical or spherical coordinates.

=⇒ need to convert the Laplacian to cylindrical and spherical
coordinates
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Derivation of the Heat Equation in 2D and 3D

Cylindrical Coordinates
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x = r cos θ
y = r sin θ
z = z

These coordinates imply r =
√

x2 + y2 and θ = tan−1 y
x and so

u(x , y , z) = u(r(x , y), θ(x , y), z).

Therefore the derivatives ∂2u
∂x2 ,

∂2u
∂y2 ,

∂2u
∂z2 can be expressed using the

chain rule.
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Derivation of the Heat Equation in 2D and 3D

First calculate

∂u
∂x

=
∂u
∂r

∂r
∂x

+
∂u
∂θ

∂θ

∂x

Using x = r cos θ and y = r sin θ we get

∂u
∂x

= cos θ
∂u
∂r
− sin θ

r
∂u
∂θ

and so the differential operator

∂

∂x
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
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∂u
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∂u
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∂u
∂r

2x

2
√
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∂u
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− y
x2

1 +
( y

x

)2
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∂
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− sin θ
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∂
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x
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= −y
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r2
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Derivation of the Heat Equation in 2D and 3D

Next, using ∂
∂x = cos θ ∂∂r −

sin θ
r

∂
∂θ three times we get

∂2u
∂x2 =

∂

∂x

(
∂u
∂x

)
= cos θ

∂

∂r

(
∂u
∂x

)
− sin θ

r
∂

∂θ

(
∂u
∂x

)

Differentiation using the product rule along with ∂2

∂r∂θ = ∂2

∂θ∂r gives us

∂2u
∂x2 = cos θ

[
cos θ

∂2u
∂r2 +

sin θ
r2

∂u
∂θ
− sin θ

r
∂2u
∂r∂θ

]
−sin θ

r

[
− sin θ

∂u
∂r

+ cos θ
∂2u
∂r∂θ

− cos θ
r

∂u
∂θ
− sin θ

r
∂2u
∂θ2

]
Therefore

∂2u
∂x2 = cos2 θ

∂2u
∂r2 + 2

sin θ cos θ
r2

∂u
∂θ
− 2

sin θ cos θ
r

∂2u
∂r∂θ

+
sin2 θ

r
∂u
∂r

+
sin2 θ

r2
∂2u
∂θ2
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Derivation of the Heat Equation in 2D and 3D
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∂2u
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sin θ
r2

∂u
∂θ
− sin θ

r
∂2u
∂r∂θ

]
−sin θ

r

[
− sin θ

∂u
∂r

+ cos θ
∂2u
∂r∂θ

− cos θ
r

∂u
∂θ
− sin θ

r
∂2u
∂θ2

]
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∂2u
∂x2 = cos2 θ
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r

∂2u
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Derivation of the Heat Equation in 2D and 3D
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Derivation of the Heat Equation in 2D and 3D

We just calculated

∂2u
∂x2 = cos2 θ

∂2u
∂r2 +2

sin θ cos θ
r2

∂u
∂θ
−2

sin θ cos θ
r

∂2u
∂r∂θ

+
sin2 θ

r
∂u
∂r

+
sin2 θ

r2
∂2u
∂θ2

Analogously

∂2u
∂y2 = sin2 θ

∂2u
∂r2 −2

sin θ cos θ
r2

∂u
∂θ

+2
sin θ cos θ

r
∂2u
∂r∂θ

+
cos2 θ

r
∂u
∂r

+
cos2 θ

r2
∂2u
∂θ2

Therefore

∇2u =
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

=
(

cos2 θ + sin2 θ
) ∂2u
∂r2

+

(
sin2 θ

r
+

cos2 θ

r

)
∂u
∂r

+

(
sin2 θ

r2
+

cos2 θ

r2

)
∂2u
∂θ2

+
∂2u
∂z2

or

Laplacian in cylindrical coordinates:

∇2u =
∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2
∂2u
∂θ2 +

∂2u
∂z2
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Derivation of the Heat Equation in 2D and 3D

Spherical Coordinates

fasshauer@iit.edu MATH 461 – Chapter 1 61

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ

Proceeding similarly as for cylindrical coordinates one can obtain

Laplacian in spherical coordinates:

∇2u =
1
ρ2

∂

∂ρ

[
ρ2∂u
∂ρ

]
+

1
ρ2 sinϕ

∂

∂ϕ

[
sinϕ

∂u
∂ϕ

]
+

1
ρ2 sin2 ϕ

∂2u
∂θ2
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Derivation of the Heat Equation in 2D and 3D
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Example
Let u(r , θ) denote the temperature, independent
of z, in a long rod parallel to the z-axis whose
cross-section in the xy -plane is given by the
circular sector 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2 .

(a) Show
∂u
∂θ

= −y
∂u
∂x

+ x
∂u
∂y

(b) Use the result of (a) to show that if the rod is
insulated on its planar surfaces, where θ = 0
and θ = π

2 , then u must satisfy the boundary
conditions

∂u
∂θ

(r ,0) = 0,
∂u
∂θ

(r ,
π

2
) = 0, 0 < r < 1.
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Derivation of the Heat Equation in 2D and 3D

Solution

(a) We use polar coordinates

x = r cos θ, y = r sin θ

Then u(x , y) = u(x(r , θ), y(r , θ)) and the chain rule gives

∂u
∂θ

=
∂u
∂x

∂x
∂θ

+
∂u
∂y

∂y
∂θ

=
∂u
∂x

(−r sin θ) +
∂u
∂y

(r cos θ)

= −y
∂u
∂x

+ x
∂u
∂y
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Derivation of the Heat Equation in 2D and 3D

(b) Let n̂ be the unit outer normal vector and remember that insulated
means that

φ · n̂ = 0 Fourier’s law⇐⇒ −K0∇u · n̂ = 0

so that ∇u · n̂ = 0, where ∇u = (ux ,uy ).

Face θ = 0: Here n̂ = (0,−1) (in cartesian coordinates). Therefore

∇u · n̂ = (ux ,uy ) · (0,−1) = −∂u
∂y

Now

Therefore
∂u
∂θ

(r ,0) = 0.
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so that ∇u · n̂ = 0, where ∇u = (ux ,uy ).
Face θ = 0: Here n̂ = (0,−1) (in cartesian coordinates). Therefore

∇u · n̂ = (ux ,uy ) · (0,−1) = −∂u
∂y

Now

∂u
∂θ

(r ,0)
(a)
= −y(r ,0)

∂u
∂x

(r ,0) + x(r ,0)
∂u
∂y

(r ,0)
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(r ,0)
(a)
= −y(r ,0)

∂u
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∂u
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means that

φ · n̂ = 0 Fourier’s law⇐⇒ −K0∇u · n̂ = 0

so that ∇u · n̂ = 0, where ∇u = (ux ,uy ).
Face θ = 0: Here n̂ = (0,−1) (in cartesian coordinates). Therefore

∇u · n̂ = (ux ,uy ) · (0,−1) = −∂u
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(r ,0)
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Derivation of the Heat Equation in 2D and 3D

(b) (cont.)
Face θ = π

2 : Here n̂ = (−1,0) so that ∇u · n̂ = −∂u
∂x .

Now

Therefore
∂u
∂θ

(r ,
π

2
) = 0.
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(b) (cont.)
Face θ = π

2 : Here n̂ = (−1,0) so that ∇u · n̂ = −∂u
∂x .

Now

∂u
∂θ

(r ,
π

2
)

(a)
= −y(r ,

π

2
)
∂u
∂x

(r ,
π

2
) + x(r ,

π

2
)
∂u
∂y

(r ,
π

2
)

Therefore
∂u
∂θ

(r ,
π

2
) = 0.
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(b) (cont.)
Face θ = π

2 : Here n̂ = (−1,0) so that ∇u · n̂ = −∂u
∂x .

Now

∂u
∂θ

(r ,
π

2
)

(a)
= −y(r ,

π

2
)
∂u
∂x

(r ,
π

2
) + x(r ,

π

2
)
∂u
∂y

(r ,
π

2
)

= −r sin
π

2
∂u
∂x

(r ,
π

2
) + r cos

π

2
∂u
∂y

(r ,
π

2
)

Therefore
∂u
∂θ

(r ,
π

2
) = 0.
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(b) (cont.)
Face θ = π

2 : Here n̂ = (−1,0) so that ∇u · n̂ = −∂u
∂x .

Now

∂u
∂θ

(r ,
π

2
)

(a)
= −y(r ,

π

2
)
∂u
∂x

(r ,
π

2
) + x(r ,

π

2
)
∂u
∂y

(r ,
π

2
)

= −r sin
π

2
∂u
∂x

(r ,
π

2
)︸ ︷︷ ︸

=0 (∇u·n̂=0)

+r cos
π

2︸ ︷︷ ︸
=0

∂u
∂y

(r ,
π

2
)

Therefore
∂u
∂θ

(r ,
π

2
) = 0.
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(b) (cont.)
Face θ = π

2 : Here n̂ = (−1,0) so that ∇u · n̂ = −∂u
∂x .

Now

∂u
∂θ

(r ,
π

2
)

(a)
= −y(r ,

π

2
)
∂u
∂x

(r ,
π

2
) + x(r ,

π

2
)
∂u
∂y

(r ,
π

2
)

= −r sin
π

2
∂u
∂x

(r ,
π

2
)︸ ︷︷ ︸

=0 (∇u·n̂=0)

+r cos
π

2︸ ︷︷ ︸
=0

∂u
∂y

(r ,
π

2
)

Therefore
∂u
∂θ

(r ,
π

2
) = 0.
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