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Derivative Estimates

Introduction

In this chapter we are mostly concerned with the numerical solution of
ODEs.

We’ve already seen that many mathematical models lead to (systems
of) differential equations. Recall our examples in Chapter 1 on
modeling.

Now we finally want to tackle these problems!

However, first we think about how to deal with derivatives numerically
since being able to do this accurately is often essential for a good ODE
or PDE solver.
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Derivative Estimates Basic Idea: Forward Differences

Recall the definition of the derivative:

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

As with the Riemann sum definition of integrals, we turn this into a
numerical method by dropping the limit:

f ′(x) ≈ Dhf (x) =
f (x + h)− f (x)

h
,

the forward difference method.

Example
Note that this method is exact for linear functions.
Let f (x) = mx + b so that f ′(x) = m. Then

Dhf (x) =
f (x + h)− f (x)

h
=

[m(x + h) + b]− [mx + b]

h
=

mh
h

= m.
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Derivative Estimates Basic Idea: Forward Differences

How accurate are forward differences in general?

If f is at least twice differentiable, we can use a Taylor expansion

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(ξ),

where ξ is somewhere between x and x + h.
Then

Dhf (x) =
f (x + h)− f (x)

h

=
[f (x) + hf ′(x) + h2

2 f ′′(ξ)]− f (x)

h

=
hf ′(x) + h2

2 f ′′(ξ)

h
= f ′(x) +

h
2

f ′′(ξ)

Therefore, the error for Dhf is

Eh(x) = f ′(x)− Dhf (x) = −h
2

f ′′(ξ) = O(h).
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Derivative Estimates Basic Idea: Forward Differences

Example
Consider the function

f (x) = arctan(x).

What is f ′(
√

2)?

Solution
We can use the forward difference method to estimate this.

f ′(
√

2) ≈ Dhf (
√

2) =
f (
√

2 + h)− f (
√

2)

h
=

arctan(
√

2 + h)− arctan
√

2
h

.

On the other hand, from calculus we know that f ′(x) =
1

1 + x2 and so

f ′(
√

2) =
1

1 + (
√

2)2
=

1
3
.

This is illustrated in the Maple worksheet Differentiation.mw.
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Derivative Estimates Symmetric Differences

A More Accurate Method

Let’s consider the following two Taylor expansions:

f (x + h)− f (x − h) = 2hf ′(x) +
h3

6
[
f ′′′(ξ1) + f ′′′(ξ2)

]
.

Solving for f ′(x) yields

f ′(x) =
f (x + h)− f (x − h)

2h
− h2

12
[
f ′′′(ξ1) + f ′′′(ξ2)

]
.

This gives us a new symmetric difference method:

f ′(x) ≈ Dhf (x) =
f (x + h)− f (x − h)

2h
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Derivative Estimates Symmetric Differences

Our derivation of the symmetric difference shows that it can be
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Derivative Estimates Richardson Extrapolation

Richardson Extrapolation

Recall from Chapter 6 that Richardson extrapolation can be used to
improve the accuracy of any numerical method that has an error of the
form O(hp).

Therefore, we can apply Richardson extrapolation to boost the
O(h) accuracy of forward differences (p = 1), and
O(h2) accuracy of symmetric differences (p = 2).

This is illustrated in the Maple worksheet Differentiation.mw.

Since we have an “exact” error estimate for these methods we can be
more precise about the impact of Richardson extrapolation.
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Derivative Estimates Richardson Extrapolation

Example
Had we taken the full Taylor series expansions in the derivation of
symmetric differences then

f (x + h)− f (x − h) = 2hf ′(x) +
h3

3
f ′′′(x) +

h5

60
f (5)(x) + . . .

or
f ′(x) =

f (x + h)− f (x − h)

2h︸ ︷︷ ︸
=Dhf (x)

+k2h2 + k4h4 + . . . ,

where k2, k4, etc., are appropriate constants independent of h.
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Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.

Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.
From the previous slide we have

D h
2
f (x) = f ′(x)− k2

(
h
2

)2

− k4

(
h
2

)4

− . . .

Dhf (x) = f ′(x)− k2h2 − k4h4 − . . .

Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.
From the previous slide we have

D h
2
f (x) = f ′(x)− 1

4
k2h2 − 1

16
k4h4 − . . .

Dhf (x) = f ′(x)− k2h2 − k4h4 − . . .

Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.
From the previous slide we have

D h
2
f (x) = f ′(x)− 1

4
k2h2 − 1

16
k4h4 − . . .

Dhf (x) = f ′(x)− k2h2 − k4h4 − . . .
Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.
From the previous slide we have

D h
2
f (x) = f ′(x)− 1

4
k2h2 − 1

16
k4h4 − . . .

Dhf (x) = f ′(x)− k2h2 − k4h4 − . . .
Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Richardson Extrapolation

Now we can look at the accuracy of the Richardson extrapolant (p = 2)
4
3D h

2
− 1

3Dh for symmetric differences.
From the previous slide we have

D h
2
f (x) = f ′(x)− 1

4
k2h2 − 1

16
k4h4 − . . .

Dhf (x) = f ′(x)− k2h2 − k4h4 − . . .
Multiplying by the appropriate factors gives

4
3

D h
2
f (x) =

4
3

f ′(x)− 1
3

k2h2 − 1
12

k4h4 − . . . (1)

1
3

Dhf (x) =
1
3

f ′(x)− 1
3

k2h2 − 1
3

k4h4 − . . . (2)

Subtracting (2) from (1) yields

4
3

D h
2
f (x)− 1

3
Dhf (x) = f ′(x) +

1
4

k4h4 + . . .

So symmetric differences with Richardson extrapolation are O(h4)
accurate (see Differentiation.mw).

fasshauer@iit.edu MATH 350 – Chapter 7 12

http://math.iit.edu/~fass


Derivative Estimates Methods for Higher-order Derivatives

An Estimate for f ′′(x)

Let’s again consider the following two Taylor expansions:

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) +
h4

24

[
f (4)(ξ1) + f (4)(ξ2)

]
.

Solving for f ′′(x) yields

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2 − h2

24

[
f (4)(ξ1) + f (4)(ξ2)

]
.

This gives us

f ′′(x) ≈ D(2)
h f (x) =

f (x + h)− 2f (x) + f (x − h)

h2 .
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f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) +
h4

24

[
f (4)(ξ1) + f (4)(ξ2)

]
.

Solving for f ′′(x) yields

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2 − h2

24

[
f (4)(ξ1) + f (4)(ξ2)

]
.

This gives us

f ′′(x) ≈ D(2)
h f (x) =

f (x + h)− 2f (x) + f (x − h)

h2 .
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Derivative Estimates Methods for Higher-order Derivatives

Remark
1 Our approximation for f ′′ has O(h2) accuracy. There is no

analogue of symmetric differences that is more accurate.

2 All numerical differentiation methods that we derived can also be
obtained via polynomial interpolation. The idea is similar to what
we did for numerical integration:

Replace f by a generic polynomial p that interpolates f at a chosen
set of nodes x1, x2, . . . , xn.
Differentiate p.
Specify a particular choice of nodes x1, x2, . . . , xn so that one of
them equals the evaluation point x (see example on next slide).
This yields the approximate formula for f ′(x).

3 The accuracy of such a method can be obtained via error
estimates for the polynomial interpolant (which we didn’t study).

4 The approach based on polynomial interpolation is very general
and can be used for arbitrary degree (i.e., arbitrarily many points),
arbitrarily spaced points (symmetric, non-symmetric, etc.), and
arbitrary order derivatives.
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Derivative Estimates Methods for Higher-order Derivatives

Example

The linear interpolant of f at (x − h, f (x − h)) and (x + h, f (x + h))
has slope

∆y
∆x

=
f (x + h)− f (x − h)

(x + h)− (x − h)
=

f (x + h)− f (x − h)

2h
= Dhf (x).

Differentiation of the quadratic interpolant

p(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
f (x1)+

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
f (x2)+

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
f (x3)

to f followed by evaluation at x1 = x − h, x2 = x and x3 = x + h
will provide the formula for f ′′(x) from the previous slide (for details
see HW).
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Old and New Facts about ODEs

Outline
1 Derivative Estimates

2 Old and New Facts about ODEs

3 Integration of ODEs

4 Single Step Methods

5 Adaptive Solvers

6 Stiff Solvers

7 Multistep Methods

8 Summary

fasshauer@iit.edu MATH 350 – Chapter 7 16

http://math.iit.edu/~fass


Old and New Facts about ODEs

First-order initial value problems

We will consider problems of the form
dy(t)

dt
= f (t , y(t))

y(t0) = y0.

Here f can take many different forms.

Example

If f (t , y(t)) = a(t)y(t) + b(t) with given functions a and b, then we have
a linear first-order initial value problem that can be solved using
integrating factors.
Namely,

y(t) =
1
µ(t)

∫ t

t0
µ(τ)b(τ)dτ

with integrating factor
µ(t) = e−

∫
a(t)dt .
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Old and New Facts about ODEs

Example

If, for example, f (t , y(t)) = − [y(t)]2, then the problem is nonlinear.

This particular problem can be solved by separation.
Namely,

dy
y2 = −dt =⇒ −1

y
= −t + C =⇒ y(t) =

1
t + c

.

Remark
In many cases f will not be as simple, and numerical methods are
required.
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Old and New Facts about ODEs Existence and Uniqueness

The theory — in particular existence and uniqueness theorems — for
differential equations is generally a rather difficult subject.

For first-order initial value problems we have

Theorem

Let f = f (t , y) and ∂f
∂y be continuous near the initial point (t0, y0). Then

there is a unique solution y defined on the interval [t0 − α, t0 + α] for
some α such that

dy(t)
dt

= f (t , y(t))

y(t0) = y0.

Remark
This theorem can be found in any introductory ODE book (such as
[Zill]). For a proof see for example [Boyce and DiPrima].
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Old and New Facts about ODEs Systems of ODEs

All numerical solvers that we will consider (especially those provided
by MATLAB) will work not only for single first-order initial-value
problems, but also for systems of first-order initial-value problems.

Example
The predator-prey model from Chapter 1 provides such a system:

dH(t)
dt

= aH(t)− bH(t)L(t)

dL(t)
dt

= −cL(t) + dH(t)L(t)

H(t0) = H0, L(t0) = L0,

where t denotes time, H population of hares, L population of lynx, and
a,b, c,d ,H0,L0 are given constants.
This system is coupled and nonlinear and does not possess an
analytical solution.
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Old and New Facts about ODEs Higher-order Equations as Systems

In addition to considering outright systems of first-order IVPs we can
also rewrite any higher-order IVP as a system of first-order IVPs.

Example
The angle θ that a pendulum with mass m and length ` makes with the
vertical satisfies the following second-order IVP (which is based on
Newton’s second law of motion):

m`
d2θ(t)

dt2 = −mg sin(θ(t))

θ(t0) = θ0

θ′(t0) = v0.

Here g is the gravitational constant, θ0 is the initial angle, and v0 the
initial angular velocity.
This problem can be converted to a system of two first-order equations.
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Old and New Facts about ODEs Higher-order Equations as Systems

Example (cont.)

We introduce a vector y(t) = [y1(t), y2(t)]T of new variables such that
[y1(t), y2(t)]T = [θ(t), dθ(t)

dt ]T .

Then

dy(t)
dt

=

[
dθ(t)

dt
d2θ(t)

dt2

]
=

[
y2(t)

−g
` sin(y1(t))

]
with

y0 =

[
θ(t0)
dθ
dt (t0)

]
=

[
θ0
v0

]
.

The same principle works for any higher-order ODE initial value
problem — even for systems of higher-order ODEs.
Therefore, all we need to numerically solve any ODE initial value
problem is a vectorized first-order solver.
The simplest such solver is given by Euler.m used in Chapter 1 (see
details below).
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=

[
θ0
v0

]
.

The same principle works for any higher-order ODE initial value
problem — even for systems of higher-order ODEs.
Therefore, all we need to numerically solve any ODE initial value
problem is a vectorized first-order solver.
The simplest such solver is given by Euler.m used in Chapter 1 (see
details below).
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Old and New Facts about ODEs Higher-order Equations as Systems

Example
Rewrite the coupled system of second-order initial-value problems

[x ′′(t)]2 + tey(t) + y ′(t) = x ′(t)− x(t)
y ′(t)y ′′(t)− cos (x(t)y(t)) + sin (tx ′(t)y(t)) = x(t)

x(0) = a, x ′(0) = b, y(0) = c, y ′(0) = d

as a first-order system.

Solution
Since there are two second-order equations we will need four new
variables leading to four first-order equations.
Therefore we take y(t) = [y1(t), y2(t), y3(t), y4(t)]T with

[y1(t), y2(t), y3(t), y4(t)]T = [x(t), x ′(t), y(t), y ′(t)]T .
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Old and New Facts about ODEs Higher-order Equations as Systems

Solution (cont.)
Since the ODEs are

[x ′′(t)]2 + tey(t) + y ′(t) = x ′(t)− x(t)
y ′(t)y ′′(t)− cos (x(t)y(t)) + sin (tx ′(t)y(t)) = x(t)

we have

dy(t)
dt

=


x ′(t)
x ′′(t)
y ′(t)
y ′′(t)



=


y2(t)√

y2(t)− y1(t)− tey3(t) − y4(t)
y4(t)

y1(t)+cos(y1(t)y3(t))−sin(ty2(t)y3(t))
y4(t)


and

y0 =


x(0)
x ′(0)
y(0)
y ′(0)

 =


a
b
c
d

 .
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Integration of ODEs

From IVPs to Integral Equations

As before, we consider the IVP

y ′(t) = f (t , y(t))

y(t0) = y0

and integrate both sides of the differential equation from t to t + h to
obtain

y(t + h)− y(t) =

∫ t+h

t
f (τ, y(τ))dτ. (3)

Therefore, the solution to our IVP can be obtained by solving the
integral equation (3).
Of course, we can use numerical integration to do this.

Remark
For simplicity we limit our discussion to single ODEs of one variable.
However, everything goes through analogously for the first-order
systems discussed on the previous slides.
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Integration of ODEs Left Endpoint Integration and Euler’s Method

Example

Apply the left endpoint rule
∫ b

a
f (x)dx ≈

n∑
i=1

h︸︷︷︸
= b−a

n

f (xi−1) on a single

interval, i.e., with n = 1, and a = t , b = t + h to the RHS of (3).

Solution
In this case the left endpoint rule is

L1(f ) =
1∑

i=1

b − a
1

f (xi−1) = ((t + h)− t) f (x0) = hf (t , y(t)).

Therefore we get ∫ t+h

t
f (τ, y(τ))dτ ≈ hf (t , y(t)).

Thus, solving (3) with the left endpoint rule is equivalent to Euler’s
method (see also Chapter 6).
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Integration of ODEs Left Endpoint Integration and Euler’s Method

Euler’s Method
In order to advance the solution of the IVP in time we introduce a
sequence of points tn = t0 + nh, n = 0,1, . . . ,N that divide a time
interval [t0, tN ] into N equal subintervals (i.e., h = tN−t0

N ).

With this notation the approximate solution of the integral equation (3)

y(t + h)− y(t) =

∫ t+h

t
f (τ, y(τ))dτ ≈ hf (t , y(t))

immediately leads to an iterative algorithm:
Algorithm (see also Euler.m)

Input t0, y0, f , h, N
for n = 0 to N − 1 do

yn+1 = yn + hf (tn, yn)
tn+1 = tn + h

end
Here we obtain approximations yn+1 ≈ y(tn+1) = y(tn + h) of the
unknown true solution y .
Euler’s method is illustrated in the MATLAB script EulerDemo350.m.
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Integration of ODEs Left Endpoint Integration and Euler’s Method

Graphical interpretation of Euler’s method

fasshauer@iit.edu MATH 350 – Chapter 7 29

Graphically, Euler’s method comes down to taking straight line
approximations of the unknown solution y over small time intervals
from tn to tn+1 = tn + h.

The slopes of these lines are given by the differential equation since it
tells us that y ′(t) = f (t , y(t)).
Note, however, that at each point (tn, yn) the
new “marching direction” for Euler’s method is
only close to the slope of the solution at tn
since in general f depends on t and y , and y
(the unknown solution) is only approximately
known.

In fact, the slope we use as “marching
direction” is that of the tangent line to a nearby
solution (corresponding to a different initial
condition).
See the Maple worksheet EulerDemo.mw.
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Integration of ODEs Trapezoidal Rules for Integration and IVPs

Example

Apply the basic trapezoidal rule
∫ b

a
f (x)dx ≈ b − a

2
[f (a) + f (b)] with

a = t and b = t + h to the RHS of (3).

Solution
This gives us∫ t+h

t
f (τ, y(τ))dτ ≈ h

2
[f (t , y(t)) + f (t + h, y(t + h))] .

The corresponding IVP solver is therefore

yn+1 = yn +
h
2

f (tn, yn) +
h
2

f (tn+1, yn+1).

Note that we have a yn+1 term on both sides of the equation (and
cannot explicitly solve for it). This means that we have an implicit
method. This method is also called trapezoidal rule (for IVPs).
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Integration of ODEs Trapezoidal Rules for Integration and IVPs

How to deal with an implicit IVP solver?

The fact that in an implicit method the unknown value yn+1 appears on
both sides of the equation causes serious problems.

We can’t simply time-advance the solution in a for-loop as we did for
Euler’s method.
Here are three commonly used approaches to deal with this difficulty:

Modify the method to make it explicit.
Couple it with an explicit method to create a so-called
predictor-corrector method.
Use a nonlinear equation solver such as Newton’s method at each
time step.

Remark
We will not focus on implicit methods. They are more difficult to
implement, but have better stability properties (see MATH 478). In
MATLAB we find them as stiff solvers.
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Integration of ODEs From Trapezoidal Rule to Second-Order Runge Kutta

In order to make the trapezoidal rule

yn+1 = yn +
h
2

f (tn, yn) +
h
2

f (tn+1, yn+1).

explicit we can use Euler’s method to replace yn+1 on the right-hand
side by

yn+1 = yn + hf (tn, yn).

Then we end up with the method

yn+1 = yn +
h
2

f (tn, yn) +
h
2

f (tn+1, yn + hf (tn, yn))

or
yn+1 = yn + h

s1 + s2

2
with

s1 = f (tn, yn)

s2 = f (tn + h, yn + hs1).

This is known as the classical second-order Runge-Kutta method.
For an example see the MATLAB files RK2.m and RK2Demo.m.
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Integration of ODEs From Trapezoidal Rule to Second-Order Runge Kutta

Graphical Interpretation of Classical 2nd-Order RK

Since the 2nd-order RK method is given by

yn+1 = yn + h
s1 + s2

2
with

s1 = f (tn, yn)

s2 = f (tn + h, yn + hs1).

we see that it corresponds to

taking a tentative Euler step with slope s1 resulting in

ỹn+1 = yn + hf (tn, yn) = yn + hs1

so that we obtain an approximate slope s2 at tn + h.
The actual Euler step then uses the average of the slopes s1 at tn
and s2 at tn + h to obtain

yn+1 = yn + h
s1 + s2

2
.

Remark
Sometimes this method is referred to as improved Euler method.
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Integration of ODEs Midpoint Rules for Integration and IVPs

Example

Apply the basic midpoint rule
∫ b

a
f (x)dx ≈ (b − a)f

(a+b
2

)
with a = t ,

b = t + h to the RHS of (3).

Solution

This gives us
∫ t+h

t
f (τ, y(τ))dτ ≈ hf (t + h

2 , y(t + h
2 )).

Now the term y(t + h
2 ) on the right-hand side is unknown.

We can use Euler’s method with step size h
2 to approximate this value:

y(t + h
2 ) ≈ y(t) + h

2 f (t , y(t)).

Therefore we get

yn+1 = yn + hf (tn + h
2 , yn + h

2 f (tn, yn)).

This is known as the modified Euler method or midpoint rule (for IVPs).
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Integration of ODEs From Midpoint Rule to Second-Order Runge-Kutta

If we write the modified Euler method (midpoint rule)

yn+1 = yn + hf (tn + h
2 , yn + h

2 f (tn, yn))

as
yn+1 = yn + hs2

with

s1 = f (tn, yn)

s2 = f (tn + h
2 , yn + h

2s1)

then this is also a second-order Runge Kutta method.

Remark
Runge-Kutta methods are characterized by having several stages
(s1, s2, . . .) for each time step.
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Integration of ODEs From Midpoint Rule to Second-Order Runge-Kutta

Graphical Interpretation of Modified Euler

Based on the Runge-Kutta formulation of the modified Euler
method/midpoint rule we can see that it corresponds to

taking an Euler step with only half the step length, h
2 , resulting in

yn+ 1
2

= yn +
h
2

f (tn, yn)

followed by an Euler step with full step length h using the slope at
the half-way point (tn+ 1

2
, yn+ 1

2
) so that

yn+1 = yn + hf (tn+ 1
2
, yn+ 1

2
).

Here tn+ 1
2

is used symbolically to denote the time tn + h
2 .
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Integration of ODEs More Midpoint Rules

Example

Apply the basic midpoint rule
∫ b

a
f (x)dx ≈ (b − a)f

(
a + b

2

)
with

a = t , b = t + 2h to the RHS of (3).

Solution
This gives us∫ t+2h

t
f (τ, y(τ))dτ ≈ 2hf (t + h, y(t + h)).

Thus, we have the explicit midpoint rule

yn+2 = yn + 2hf (tn+1, yn+1).

This is an explicit 2-step method (and not a Runge-Kutta method). In
the context of PDEs this method appears as the leapfrog method.
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Integration of ODEs More Midpoint Rules

Example
There are many more examples connecting numerical integration
methods with a solver for first-order initial value problems:

The right endpoint rule will give rise to the so-called backward
Euler method

yn+1 = yn + hf (tn+1, yn+1)

— an implicit method.
Simpson’s rule yields the classical fourth-order Runge-Kutta
method (see below) in case there is no dependence of f on y .
Gauss quadrature leads to so-called Gauss-Runge-Kutta or
Gauss-Legendre methods. One such method is the implicit
midpoint rule

yn+1 = yn + hf (tn + h
2 ,

1
2(yn + yn+1)).
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Single Step Methods

Outline
1 Derivative Estimates

2 Old and New Facts about ODEs

3 Integration of ODEs

4 Single Step Methods

5 Adaptive Solvers

6 Stiff Solvers

7 Multistep Methods

8 Summary
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Single Step Methods

Methods for which the value yn+1 depends only on the previous time
level tn are called single step methods. All methods mentioned so far
(except for the explicit midpoint rule) fall into this category.

We now take a closer look at the family of Runge-Kutta methods
named after the late 19th/early 20th century German mathematicians
Carl Runge and Martin Kutta.
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Single Step Methods Runge-Kutta Methods

Second-order Runge-Kutta Methods

We already met the classical second-order Runge-Kutta (improved
Euler) method

yn+1 = yn + h
s1 + s2

2
with

s1 = f (tn, yn)

s2 = f (tn + h, yn + hs1)

and the modified Euler method (midpoint rule)

yn+1 = yn + hs2

with

s1 = f (tn, yn)

s2 = f (tn + h
2 , yn + h

2s1).

What do they have in common?
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Single Step Methods Runge-Kutta Methods

Both methods use two intermediate stages s1 and s2 to advance the
solution.

The stages correspond to different estimates for the slope of the
solution.

As mentioned earlier,
In the classical RK2 (improved Euler) method we average the
slopes s1 at tn and s2 at tn + h,
while for the modified Euler method we use s1 at tn to take a
half-step to tn + h

2 , compute s2 and then take the full step.

One can imagine many other possibilities to complete these two
stages.
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Single Step Methods Runge-Kutta Methods

A general explicit two-stage Runge-Kutta method is of the form

yn+1 = yn + h [γ1s1 + γ2s2]

where

s1 = f (tn, yn)

s2 = f (tn + α2h, yn + hβ21s1),

with α2 = β21 (which ensures that the method is consistent1 or
first-order).

Clearly, this is a generalization of the classical Runge-Kutta method
since the choice γ1 = γ2 = 1

2 and α2 = β21 = 1 yields that case.

Remark
The somewhat arbitrary notation comes from a more general
discussion that includes implicit as well as higher-order methods.

1Consistency is necessary for convergence (more details in MATH 478)
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Single Step Methods Runge-Kutta Methods

Butcher Tableaux

It is customary to arrange the coefficients αi , βij , and γi in a so-called
Runge-Kutta or Butcher tableaux.

An explicit two-stage RK method will always look like

0 0 0
α2 β21 0

γ1 γ2

with α2 = β21.
Using Taylor series expansions one can show (see MATH 478) that for
the method to be second-order it needs to also satisfy

γ1 + γ2 = 1
β21γ2 = 1

2

— a system of two nonlinear equations in three unknowns. It is not
difficult to generate solutions of this system.
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Single Step Methods Runge-Kutta Methods

Remark
The choice γ1 = 1, γ2 = 0 leads to Euler’s method. However, since
now we can’t have β21γ2 = 1

2 Euler’s method is only a first-order
method.

Example
The Butcher tableaux for the classical RK2 method is

0 0 0
1 1 0

1
2

1
2 .

Example
The Butcher tableaux for the modified Euler method is

0 0 0
1
2

1
2 0
0 1.
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Single Step Methods Runge-Kutta Methods

Example
Another interesting second-order Runge-Kutta method has the
tableaux

0 0 0
2
3

2
3 0
1
4

3
4 .

We will see later how it can be embedded into a third-order method
that uses the same slopes as the second-order method (plus one
additional one) resulting in an adaptive method.
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Single Step Methods Runge-Kutta Methods

Fourth-order Runge-Kutta Methods
Probably the most famous Runge-Kutta method is the four-stage
classical fourth-order method:

yn+1 = yn +
h
6

[s1 + 2s2 + 2s3 + s4]

with s1 = f (tn, yn)

s2 = f
(
tn + h

2 , yn + h
2s1
)

s3 = f
(
tn + h

2 , yn + h
2s2
)

s4 = f (tn + h, yn + hs3)

and Butcher tableaux
0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6 .

For an example see the MATLAB files RK4.m and RK4Demo.m.
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Single Step Methods Runge-Kutta Methods

Convergence Experiments

In the MATLAB script EulerRKConvergenceDemo.m we compare the
orders (convergence rates) of three single step methods:

Euler’s method (first-order),
classical second-order Runge-Kutta (or improved Euler) method
(second-order),
classical fourth-order Runge-Kutta method (fourth-order).
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Adaptive Solvers
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Adaptive Solvers

In order to be able to implement an adaptive step size control as we
did for numerical integration in quadtx we need to have two IVP
solvers of different orders that can be paired together efficiently.

There are several ways to do this:
using embedded Runge-Kutta methods (such as the MATLAB

functions ode23, ode45, ode23s2),
using adaptive order methods which are usually based on
multistep methods (such as ode113, ode15s),
using so-called predictor-corrector methods (also based on
multistep methods such as Adams methods),
using two totally different methods (such as ode23t and ode23tb
which both couple the trapezoidal rule with something else).

2the s indicates a stiff solver
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multistep methods (such as ode113, ode15s),

using so-called predictor-corrector methods (also based on
multistep methods such as Adams methods),
using two totally different methods (such as ode23t and ode23tb
which both couple the trapezoidal rule with something else).

2the s indicates a stiff solver
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Adaptive Solvers Embedded Runge-Kutta Methods

The second-order Runge-Kutta methods we discussed earlier require
two evaluations of f , i.e., two stages, per time step. Similarly, the
fourth-order method required four function evaluations.

For more general Runge-Kutta methods the situation is as follows:

# of stages per time step 2 3 4 5 6 7 8 9 10 11
maximum order achievable 2 3 4 4 5 6 6 7 7 8

This shows that higher-order (> 4) Runge-Kutta methods are relatively
inefficient.

However, certain higher-order methods are still useful if we want to
construct adaptive embedded Runge-Kutta methods.
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Adaptive Solvers Embedded Runge-Kutta Methods

Example
Earlier we mentioned the second-order Runge-Kutta method

yn+1 = yn +
h
4

[s1 + 3s2]

with
s1 = f (tn, yn)

s2 = f (tn + 2
3h, yn + 2

3hs1).

It can be paired with a third-order method that looks like

yn+1 = yn +
h
8

[2s1 + 3s2 + 3s3]

with the same s1 and s2 and

s3 = f (tn + 2
3h, yn + 2

3hs2).

The combination uses only three function evaluations per time step.
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Adaptive Solvers Embedded Runge-Kutta Methods

In general, for an embedded Runge-Kutta method we compute the
value yn+1 with two different methods.

We need to pair up methods of different orders that use the same
function evaluations, i.e., the function evaluations used for the
lower-order method are embedded in the second higher-order method.
Other popular examples are:

The MATLAB solver ode23 by Bogacki and Shampine (which pairs
a three-stage second-order method with a four-stage third-order
method – see next section).
The classical fourth-fifth-order Runge-Kutta-Fehlberg method
(which couples a five-stage fourth-order method with a six-stage
fifth-order method). This is Maple’s default numerical IVP solver
RKF45.
The ode45 code in MATLAB uses a different pair found by
Dormand and Prince.
Mathematica has a fourth-fifth-order pair discovered by Bogacki
and Shampine.
There also is a fifth-sixth-order pair by Dormand and Prince.
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Adaptive Solvers The MATLAB Function ode23

In [NCM] we can find a detailed discussion of the textbook version
ode23tx of the Bogacki-Shampine BS23 method.

A seemingly inefficient three-stage second-order method is given by

yn+1 = yn +
h
9

(2s1 + 3s2 + 4s3)

with s1 = f (tn, yn)

s2 = f
(
tn + h

2 , yn + h
2s1
)

s3 = f
(
tn + 3

4h, yn + 3
4hs2

)
while the related four-stage third-order method is

ỹn+1 = yn +
h
24

(7s1 + 6s2 + 8s3 + 3s4)

with s1, s2 and s3 as above, and

s4 = f (tn+1, yn+1)

using the second-order approximation yn+1.
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Adaptive Solvers The MATLAB Function ode23

Adaptive step size control

Using a technique similar to Richardson extrapolation we can obtain
an error estimate which we can use to adaptively control the stepsize:

en+1 =
h
72

(−5s1 + 6s2 + 8s3 − 9s4).

How is this error estimate used?
If the error estimate is less than a specified tolerance, then we
accept the new value yn+1 given by the more conservative
lower-order three-stage method.
Note that the fourth stage is not wasted since it is used as the first
stage for the next time step. Thus, only three function evaluations
are required per time step.
If the error is too large, then we forget the yn+1 calculation and try
again with a smaller value of h.
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Adaptive Solvers The MATLAB Function ode23

Slightly simplified main ingredients of ode23tx.m
Function header:

function [tout,yout] = ode23tx(F,tspan,y0,arg4,varargin)

Initialize a few variables:

rtol = 1.e-3, atol = 1.e-6;
t0 = tspan(1);
tfinal = tspan(2);
tdir = sign(tfinal - t0); % "forward" or "backward"
threshold = atol / rtol;
hmax = abs(0.1*(tfinal-t0));
t = t0, y = y0(:);

Set initial time step size depending on scale of the problem:

s1 = F(t, y, varargin{:});
r = norm(s1./max(abs(y),threshold),inf) + realmin;
h = tdir*0.8*rtol^(1/3)/r;

The cube root appears because we have a third-order method.
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Adaptive Solvers The MATLAB Function ode23

Main loop

while t ~= tfinal
hmin = 16*eps*abs(t);
if abs(h) > hmax, h = tdir*hmax; end
if abs(h) < hmin, h = tdir*hmin; end
% Stretch the step if t is close to tfinal.
if 1.1*abs(h) >= abs(tfinal - t)

h = tfinal - t;
end

The Runge-Kutta step

s2 = F(t+h/2, y+h/2*s1, varargin{:});
s3 = F(t+3*h/4, y+3*h/4*s2, varargin{:});
tnew = t + h;
ynew = y + h*(2*s1 + 3*s2 + 4*s3)/9;
s4 = F(tnew, ynew, varargin{:});
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if 1.1*abs(h) >= abs(tfinal - t)

h = tfinal - t;
end

The Runge-Kutta step

s2 = F(t+h/2, y+h/2*s1, varargin{:});
s3 = F(t+3*h/4, y+3*h/4*s2, varargin{:});
tnew = t + h;
ynew = y + h*(2*s1 + 3*s2 + 4*s3)/9;
s4 = F(tnew, ynew, varargin{:});
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Error estimate scaled to match the tolerances (realmin prevents err
from being exactly zero):

e = h*(-5*s1 + 6*s2 + 8*s3 - 9*s4)/72;
err = norm(e./max(max(abs(y),abs(ynew)),threshold),

... inf) + realmin;

See if we advance or repeat

if err <= rtol
t = tnew;
y = ynew;
tout(end+1,1) = t;
yout(end+1,:) = y.’;
s1 = s4; % Reuse final function value in new step

% else forget the latest calculation
end
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Compute new step size:

h = h*min(5,0.8*(rtol/err)^(1/3));
end % of function ode23tx

Here

rtol/err

{
> 1 if advance
< 1 otherwise,

and the factors 0.8 and 5 prevent excessive changes in step size.
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We illustrate the use of ode23tx in several examples.

Example
The trivial initial value problem

dy
dt

= 0, 0 ≤ t ≤ 10

y(0) = 1

has solution y(t) = 1.
In MATLAB we can use ode23tx to solve this problem by

running this MATLAB code :

f = @(t,y) 0;
ode23tx(f,[0 10],1);
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Example
The harmonic oscillator (see Pendulum example )

d2

dt2 y(t) = −y(t), 0 ≤ t ≤ 2π

y(0) = 1 y ′(0) = 0

is solved in MATLAB by

first converting it to a system of first-order initial
value problems:

y ′1(t) = y2(t)
y ′2(t) = −y1(t)

We can then use ode23tx and run this MATLAB code :

f = @(t,y) [y(2); -y(1)];
ode23tx(f,[0 2*pi],[1; 0]);
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Example (cont.)
In order to get a phase plane plot, i.e., a plot of the y2 component
(velocity) vs. the y1 component (position) parametrized by time, we use

Run this MATLAB code

f = @(t,y) [y(2); -y(1)];
[t,y] = ode23tx(f,[0 2*pi],[1; 0]);
plot(y(:,1),y(:,2),’-o’)
axis([-1.2 1.2 -1.2 1.2])
axis square

A few other ways to achieve this (such as by defining your own plotting
function) are described in [NCM].
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Example
In the two-body problem we model the orbit of a small body (such as a
spaceship) as it moves under the gravitational attraction of a much
heavier body (a planet).
A model for the path of the small body (specified by the Cartesian
coordinates of its position at time t relative to the large body) is

x ′′(t) = − x(t)
r(t)3

y ′′(t) = − y(t)
r(t)3

where
r(t) =

√
x(t)2 + y(t)2.
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Example (cont.)
Since this is a system of two second-order equations we rewrite them
as (cf. earlier example )

y(t) =


x(t)
x ′(t)
y(t)
y ′(t)


so that

y ′(t) =


x ′(t)

−x(t)/r(t)3

y ′(t)
−y(t)/r(t)3


This is illustrated in twobody.m and TwobodyDemo.m.
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Example
If one lights a match, the ball of flame grows rapidly until it reaches a
critical size. Then it remains at that size because the amount of
oxygen being consumed by the combustion in the interior of the ball
balances the amount available through the surface.

A mathematical model for this is given by the nonlinear first-order
equation

y ′(t) = y2(t)− y3(t), 0 ≤ t ≤ 2
δ

y(0) = δ,

y(t): radius of the ball of flame at time t ,
y2: comes from surface area,
y3: comes from volume,
δ: initial radius (assumed to be “small”, transition to critical size
occurs at 1

δ ).
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Example (cont.)
The exact solution is given by

y(t) =
1

W (aea−t ) + 1
, a = 1

δ − 1,

where W is the Lambert W function (the solution of the equation
W (z)eW (z) = z, see also the Maple worksheet MatchDemo.mw).

The numerical solution is illustrated in the MATLAB script
MatchDemo.m and in in the NCM file flame.m.
Note how it takes ode23tx longer and longer to obtain a solution for
decreasing values of δ.
This problem is initially well-behaved, but becomes stiff as the solution
approaches the steady state of 1. See an illustration of the stiffness in
MatchDemo.mw.
The stiff solver ode23s used to solve this problem much more
efficiently is an embedded second-third order implicit Runge-Kutta (or
Rosenbrock) method.
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Using odeset to add special options to MATLAB’s IVP
solvers

Example
In the match problem we used the odeset function to reduce the
default relative tolerance from 10−3 to 10−4 via

tol = 1e-4;
opts = odeset(’RelTol’,tol);
ode23tx(f,[t0 tmax],y0,opts);
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Example
Let’s consider again the skydive model of Chapters 1 and 4:

dv
dt

(t) =
Fg + Fd

m
= g − c

m
v2(t), v(0) = v0 = 0.

Here we used the second model according to which the drag force due
to air resistance is proportional to the square of the velocity.

In addition, let’s assume that the gravitational “constant” g depends on
the altitude x according to Newton’s inverse square law of gravitational
attraction

g(x) = g(0)
R2

(R + x(t))2

with
R ≈ 6.37× 106(m): earth’s radius,
g(0) = 9.81(m/s2): value of the gravitational constant at the
earth’s surface.
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Example (cont.)
Combining the above information we get

dv
dt

(t) = g(0)
R2

(R + x(t))2 −
c
m

v2(t), v(0) = v0 = 0.

Since v = −dx
dt (with “−” indicating downward motion) we actually end

up either with a second-order IVP, or with the first-order system

dx
dt

(t) = −v(t)

dv
dt

(t) = g(0)
R2

(R + x(t))2 −
c
m

v2(t)

x(0) = x0

v(0) = 0.

A standard jumping altitude is about x0 = 4000(m).
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Example (cont.)
In Chapter 4 we said that in order to decide when the skydiver will hit
the ground we

first need to solve the coupled second-order IVP for the position
(altitude).

Then we need to find the root of the position function using a
root-finding algorithm.

This is quite complicated, and luckily MATLAB offers a simpler
approach based on event handling.

The MATLAB programs Skydive3Demo.m, Skydive3.m, and
Skydive3Event.m illustrate how this works.
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Example (cont.)
Event handling for the skydive problem works as follows:
In the main program we call ode23

opts = odeset(’events’,@Skydive3Event);
[t,y,te,ye] = ode23(@Skydive3,[t0 tend],y0,opts,g,c,m,R);

where t0,tend,y0,g,c,m,R are specified values.

The event handler Skydive3Event.m consists of

function [stopval,isterm,dir] = Skydive3Event(t,y,g,c,m,R)
stopval = y(1); % the value we want to make 0
isterm = 1; % stop when stopval is 0
dir = []; % direct. from which we approach 0 irrelevant

y(1) contains the altitude, so the solver stops when this value
becomes zero.
isterm specifies whether we stop when the stop event occurs, or
continue to tend (isterm = 0).
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Example (cont.)
Event handling for the skydive problem works as follows:
In the main program we call ode23
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Adaptive Solvers Using odeset to add special options to MATLAB’s IVP solvers

Example
As a small challenge you should try to modify the previous skydive
example to cover the model of Problem 3 of Homework Assignment 1
and Problem 1 of Computer Assignment 1 in which the skydiver was
allowed to use a parachute.
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Stiff Solvers

What is Stiffness?

In our earlier match lighting example we stated that the problem
eventually becomes stiff. What did we mean by this?

In [NCM] we read:

A problem is stiff if the solution being sought varies slowly, but
there are nearby solutions that vary rapidly, so the numerical
method must take small steps to obtain satisfactory results.

Other similar descriptions from the literature are:
A problem is stiff if it contains widely varying time scales, i.e.,
some components of the solution decay much more rapidly than
others.
A problem is stiff if the stepsize is dictated by stability
requirements rather than by accuracy requirements.
A problem is stiff if explicit methods don’t work, or work only
extremely slowly.
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Stiff Solvers

Stiff ODEs arise in many applications; e.g.,
when modeling chemical reactions,
in control theory,
in network analysis and simulation problems,
in electrical circuits.

fasshauer@iit.edu MATH 350 – Chapter 7 75

http://math.iit.edu/~fass


Stiff Solvers

The van der Pol Equation
Example
The van der Pol equation is a generalization of the simple harmonic
oscillator (obtained by setting µ = 0 below). It models oscillations in
which energy is fed into small oscillations and removed from large
ones.

This results in a second-order nonlinear IVP

y ′′(t)− µ
(

1− y2(t)
)

y ′(t) + y(t) = 0,

y(0) = y0, y ′(0) = yp0,

where µ is a parameter that indicates the amount of damping.
For positive values of µ the solution describes deterministic chaos and
ends up in a limit cycle.
For large values of µ the equation becomes stiff.
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Stiff Solvers

Example (cont.)
Written as a first-order system we have

y ′1(t) = y2(t)

y ′2(t) = µ
(

1− y2
1 (t)

)
y2(t)− y1(t)

y1(0) = y0

y2(0) = yp0.

Solution of this system is illustrated in the MATLAB script
VanderPolDemo.m.
Additional plots are provided in VanderPolPlots.m.
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Example (cont.)
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Stiff Solvers

Remark
While our explicit solvers ode23 and ode45 use adaptive stepsizes,
there are stability constraints we have not discussed which prevent
them from taking very large time steps — even if the problem would
seem to allow this.

This is why explicit solvers don’t work for stiff problems.

Implicit solvers have much better stability properties, and therefore
adaptive implicit solvers (such as ode23s and ode15s) can be used
much more efficiently to deal with stiff problems.
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Multistep Methods

A single-step numerical method uses only the most recent history, yn,
to obtain the next value yn+1.

With an s-step method, on the other hand, more of the history of the
solution will affect the next value, i.e., yn+s depends on s previous
values, yn+s−1, yn+s−2, . . . , yn+1, yn.

In its most general form an s-step method looks like

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

where the coefficients am and bm, m = 0,1, . . . , s, are independent of
h, n, and the underlying ODE.

Usually, the formula is normalized so that as = 1.

Different choices of the am and bm yield different numerical methods.

We have a true s-step formula if either a0 or b0 is different from zero.
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Multistep Methods

General s-step method:

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

If bs = 0 the method is explicit (otherwise implicit).

Explicit s-step methods can be accurate at most of order s.

For implicit s-step methods this can increase to s + 1 (if s odd) or s + 2
(s even).

Adam-Bashforth methods are optimal order explicit methods.
Adam-Moulton methods with odd s are optimal order implicit methods.

Multistep methods require additional startup values. These are
frequently obtained using one step of a higher-order single-step
method (such as a Runge-Kutta method).

fasshauer@iit.edu MATH 350 – Chapter 7 81

http://math.iit.edu/~fass


Multistep Methods

General s-step method:

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

If bs = 0 the method is explicit (otherwise implicit).

Explicit s-step methods can be accurate at most of order s.

For implicit s-step methods this can increase to s + 1 (if s odd) or s + 2
(s even).

Adam-Bashforth methods are optimal order explicit methods.
Adam-Moulton methods with odd s are optimal order implicit methods.

Multistep methods require additional startup values. These are
frequently obtained using one step of a higher-order single-step
method (such as a Runge-Kutta method).

fasshauer@iit.edu MATH 350 – Chapter 7 81

http://math.iit.edu/~fass


Multistep Methods

General s-step method:

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

If bs = 0 the method is explicit (otherwise implicit).

Explicit s-step methods can be accurate at most of order s.

For implicit s-step methods this can increase to s + 1 (if s odd) or s + 2
(s even).

Adam-Bashforth methods are optimal order explicit methods.
Adam-Moulton methods with odd s are optimal order implicit methods.

Multistep methods require additional startup values. These are
frequently obtained using one step of a higher-order single-step
method (such as a Runge-Kutta method).

fasshauer@iit.edu MATH 350 – Chapter 7 81

http://math.iit.edu/~fass


Multistep Methods

General s-step method:

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

If bs = 0 the method is explicit (otherwise implicit).

Explicit s-step methods can be accurate at most of order s.

For implicit s-step methods this can increase to s + 1 (if s odd) or s + 2
(s even).

Adam-Bashforth methods are optimal order explicit methods.
Adam-Moulton methods with odd s are optimal order implicit methods.

Multistep methods require additional startup values. These are
frequently obtained using one step of a higher-order single-step
method (such as a Runge-Kutta method).

fasshauer@iit.edu MATH 350 – Chapter 7 81

http://math.iit.edu/~fass


Multistep Methods

General s-step method:

s∑
m=0

amyn+m = h
s∑

m=0

bmf (tn+m, yn+m), n = 0,1, . . . ,

If bs = 0 the method is explicit (otherwise implicit).

Explicit s-step methods can be accurate at most of order s.

For implicit s-step methods this can increase to s + 1 (if s odd) or s + 2
(s even).

Adam-Bashforth methods are optimal order explicit methods.
Adam-Moulton methods with odd s are optimal order implicit methods.

Multistep methods require additional startup values. These are
frequently obtained using one step of a higher-order single-step
method (such as a Runge-Kutta method).

fasshauer@iit.edu MATH 350 – Chapter 7 81

http://math.iit.edu/~fass


Multistep Methods

Explicit methods

Example
First-order Adams-Bashforth method (Euler):

yn+1 = yn + hf (tn, yn)

Second-order Adams-Bashforth method:

yn+2 = yn+1 + h
2 [3f (tn+1, yn+1)− f (tn, yn)]

Third-order Adams-Bashforth method:

yn+3 = yn+2 + h
12 [23f (tn+2, yn+2)− 16f (tn+1, yn+1) + 5f (tn, yn)]
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Multistep Methods

Implicit methods

Example
First-order Adams-Moulton method (backward Euler):

yn+1 = yn + hf (tn+1, yn+1)

Second-order Adams-Moulton method (trapezoidal method, note
only 1-step):

yn+2 = yn+1 + h
2 [f (tn+2, yn+2) + f (tn+1, yn+1)]

Third-order Adams-Moulton method:

yn+3 = yn+2 + h
12 [5f (tn+3, yn+3) + 8f (tn+2, yn+2)− f (tn+1, yn+1)]
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Multistep Methods

Usually one combines an implicit Adams-Moulton method with an
explicit Adams-Bashforth method as a predictor-corrector pair. See,
e.g., MATLAB’s ode113, or

Example

Predictor (AB2): ỹn+2 = yn+1 + h
2 [3f (tn+1, yn+1)− f (tn, yn)]

Corrector (AM2): yn+2 = yn+1 + h
2 [f (tn+1, yn+1) + f (tn+2, ỹn+2)]

Error estimator for adaptive step size control: κ = 1
6 |ỹn+2 − yn+2|

Remark
Multistep methods tend to be more efficient than single-step methods
for problems with smooth solutions and high accuracy requirements.
For example, the orbits of planets and deep space probes are
computed with multistep methods.

BDF multistep methods are implemented in MATLAB as ode15s.
Many more details on multistep methods are provided in MATH 478.
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Error estimator for adaptive step size control: κ = 1
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Remark
Multistep methods tend to be more efficient than single-step methods
for problems with smooth solutions and high accuracy requirements.
For example, the orbits of planets and deep space probes are
computed with multistep methods.

BDF multistep methods are implemented in MATLAB as ode15s.
Many more details on multistep methods are provided in MATH 478.
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2 [3f (tn+1, yn+1)− f (tn, yn)]

Corrector (AM2): yn+2 = yn+1 + h
2 [f (tn+1, yn+1) + f (tn+2, ỹn+2)]
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Summary

Things to remember about this chapter

The derivative estimates are important in and of themselves, but
also play a fundamental role in finite difference solvers for BVPs
and PDEs (see below).
The ODE solvers we looked at are limited to initital value
problems.
Always convert your problem to a (system of) first-order ODEs
before applying one of the standard solvers.
Choose your method according to the guidelines on the next slide
(from MATLAB’s Help documentation).
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Summary

MATLAB ODE Solvers
ode45: Nonstiff problems, medium accuracy. Use most of the
time. This should be the first solver you try.
ode23: Nonstiff problems, low accuracy. Use for large error
tolerances or moderately stiff problems.
ode113: Nonstiff problems, low to high accuracy. Use for
stringent error tolerances or computationally intensive ordinary
differential equation functions.
ode15s Stiff problems, low to medium accuracy. Use if ode45 is
slow (stiff systems) or there is a mass matrix.
ode23s Stiff problems, low accuracy. Use for large error
tolerances with stiff systems or with a constant mass matrix.
ode23t Moderately stiff problems, low accuracy. Use for
moderately stiff problems where you need a solution without
numerical damping.
ode23tb Stiff problems, low accuracy. Use for large error
tolerances with stiff systems or if there is a mass matrix.
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Summary

Other things we did not discuss
Accuracy issues, such as local vs. global truncation errors. See MATH
478 for details (or Section 7.13 in [NCM]).

Boundary value problems in one variable, such as

d2

dt2 y(t) = −y(t), 0 ≤ t ≤ 2π
y(0) = 1, y(2π) = 0

MATLAB provides the finite difference solver bvp4c for such problems.
Other popular methods are shooting methods, or collocation methods
such as spectral methods. See MATH 478 for more on this.

Partial differential equations, such as vibration of a string

∂2

∂t2 u(x , t) = c2 ∂2

∂x2 u(x , t), 0 ≤ x ≤ L, 0 ≤ t ≤ T
u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T
u(x ,0) = f (x), ∂

∂t u(x ,0) = g(x), 0 ≤ x ≤ L.

A bit more is discussed in MATH 478 (and then MATH 589). See also
Chapter 11 of [NCM].
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