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Motivation and Applications

Numerical integration — the process of evaluating a definite integral
numerically — is also known as quadrature.

Certain integrals of “simple” functions can not be evaluated by basic
analytical (i.e., calculus) methods.

Example
Such examples include

the normal distribution function∫ x

0
e−t2

dt

=
√
π

2 erf(x),

arc length calculations such as∫ 1
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where K and F are complete and incomplete elliptic integrals of
the first kind, respectively,
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Motivation and Applications

Example (cont.)
a “harmless” trigonometric integral∫ 1

0
cos(x3)dx

= 3
7 sin(1) + cos(1)− 3

7 sin(1)s 11
6 ,

3
2
(1)

−s 5
6 ,

1
2
(1) (cos(1)− sin(1)) ,

with the Lommel function sα,β.

the Bessel function J0

1
π

∫ π

0
cos(x sin t)dt = J0(x),

a complicated integral involving J0 that even the current versions
of Maple or Mathematica/Alpha can’t handle analytically∫ 1

0
J0(x)xex2

dx ,
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Motivation and Applications

Example (cont.)
the sine integral ∫ x

0

sin t
t

dt = Si(x),

or problems from engineering such as this integral which plays a
role in Debye’s model for calculating the heat capacity of a solid:∫ x

0

t3

et − 1
dt = −π4

15 −
x4

4 + x3 ln(1− ex ) + 3x2Li2(ex )

−6xLi3(ex ) + 6Li4(ex ).

Here Lin is the polylogarithm of index n.

Other “functions” are not even given in closed form, but only as a set of
discrete values (for example as measurements in an experiments, or
as output from another computer simulation).
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Motivation and Applications

Numerical integration is also closely related to the solution of
differential equations.

Example

Solve the simple first-order differential equation y ′(t) = ky(t).
Clearly, this can be achieved by separation and integration:

y ′ = ky ⇐⇒ dy
dt

= ky ⇐⇒ dy
y

= kdt

⇐⇒
∫

dy
y

=

∫
kdt ⇐⇒ ln |y | = kt + c ⇐⇒ y = Cekt .

However, here no numerical integration was required.
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Motivation and Applications

Example
More generally, an arbitrary first-order differential equation

y ′(t) = f (t , y(t)) (1)

can also be solved by integration

, i.e., we integrate (1) on a (small) interval
[t , t + h] to get∫ t+h

t
y ′(τ)dτ = y(t + h)− y(t) =

∫ t+h

t
f (τ, y(τ))dτ. (2)

If we assume that f is almost constant on [t , t + h], i.e., f (τ, y(τ)) ≈ f (t , y(t))
for τ ∈ [t , t + h], then we further have∫ t+h

t
f (τ, y(τ))dτ ≈

∫ t+h

t
f (t , y(t))dτ = f (t , y(t))

∫ t+h

t
dτ = f (t , y(t))h.

Combining this with (2), we end up with Euler’s method from Chapter 1:

y(t + h) ≈ y(t) + hf (t , y(t)).
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Motivation and Applications

The general idea

Any numerical integration/quadrature method will replace a given
(continuous) integral by a (discrete) sum, i.e.,∫ b

a
f (x)dx ≈

n∑
i=1

wi f (xi),

where the wi are weights and the xi are integration nodes both of
which characterize a specific rule.

Note that for the integration leading to Euler’s method we have

a = t , b = t + h, n = 1, w1 = h =
b − a

n
and x1 = t .

Since we approximate an integral by a sum, using a quadrature rule
will generally come at the expense of a truncation error.
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b − a

n
and x1 = t .

Since we approximate an integral by a sum, using a quadrature rule
will generally come at the expense of a truncation error.
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Motivation and Applications

Example
Monte Carlo integration assumes that all weights are equal, i.e.,
wi = b−a

n , and the integration nodes are random points in the interval
[a,b].

Then
1

b − a

∫ b

a
f (x)dx ≈ 1

n

n∑
i=1

f (xi),

i.e., we approximate the average of the function by the average of a
random set of function values.

This method is extremely simple to use and one of the few viable
methods for high-dimensional integrals.

On the downside, it is not very accurate, i.e., n may have to be very
large to get an acceptable result.
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Basic Numerical Integration Methods from Calculus

Outline
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Basic Numerical Integration Methods from Calculus Left, Right and Midpoint Rules

In Calculus the Riemann integral∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (x∗i )∆x

is defined as the limit of the sum of areas of ever-thinner rectangles.

By dropping the limit, i.e., taking only a finite number, n, of terms in the
sum we get a numerical integration method:∫ b

a
f (x)dx ≈

n∑
i=1

f (x∗i )∆x

Depending on how we select the points x∗i , we will obtain slightly
different rules:

left endpoint rule: x∗i at the left endpoint of each sub-interval,
right endpoint rule: x∗i at the right endpoint of each sub-interval,
midpoint rule: x∗i at the midpoint of each sub-interval.

See the Maple worksheet Integration.mw or Maple’s Approximate
Integration Tutor.
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Basic Numerical Integration Methods from Calculus Left, Right and Midpoint Rules

Formulas
Split [a,b] into n subintervals (each of length h = b−a

n ), and let
xi = a + ih, i = 0, . . . ,n, be the endpoints of these subintervals.

Left endpoint rule:∫ b

a
f (x)dx ≈ Ln(f ) =

n∑
i=1

hf (xi−1),

i.e., weights are all equal, wi = h, and nodes are left endpoints.
Right endpoint rule analogous:∫ b

a
f (x)dx ≈ Rn(f ) =

n∑
i=1

hf (xi).

Midpoint rule:∫ b

a
f (x)dx ≈ Mn(f ) =

n∑
i=1

hf
(

xi−1 + xi

2

)
.

Again all equal weights, but nodes at midpoints.
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Basic Numerical Integration Methods from Calculus Left, Right and Midpoint Rules

Truncation errors
Perform the convergence experiments in Integration.mw.

Left endpoint rule: ∫ b

a
f (x)dx = Ln(f ) +O(h).

Right endpoint rule:∫ b

a
f (x)dx = Rn(f ) +O(h).

Midpoint rule: ∫ b

a
f (x)dx = Mn(f ) +O(h2).

Remark
While all methods converge to the Riemann integral limit, they do this
at different rates! The midpoint rule is generally much more accurate
— even though all three methods approximate the integrand by a
constant on each subinterval.
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Basic Numerical Integration Methods from Calculus The Trapezoidal Rule

With the simplest rules from the previous slides we approximate the
integrand by a constant on each subinterval.

We can do better by using polynomial interpolants of f .

Use of a linear interpolant on each subinterval [xi−1, xi ], i = 1, . . . ,n,
leads to the trapezoidal rule, i.e.,∫ xi

xi−1

f (x)dx ≈
∫ xi

xi−1

p(x)dx ,

where
p(x) =

x − xi

xi−1 − xi
f (xi−1) +

x − xi−1

xi − xi−1
f (xi).
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Basic Numerical Integration Methods from Calculus The Trapezoidal Rule

Derivation of Trapezoid Rule∫ xi

xi−1

f (x)dx ≈
∫ xi

xi−1

[
x − xi

xi−1 − xi
f (xi−1) +

x − xi−1

xi − xi−1
f (xi)

]
dx

=
f (xi−1)

xi−1 − xi

∫ xi

xi−1

(x − xi)dx +
f (xi)

xi − xi−1

∫ xi

xi−1

(x − xi−1)dx

=
f (xi−1)

xi−1 − xi

[
(x − xi)

2

2

]xi

xi−1

+
f (xi)

xi − xi−1

[
(x − xi−1)2

2

]xi

xi−1

= − f (xi−1)

xi−1 − xi

(xi−1 − xi)
2

2
+

f (xi)

xi − xi−1

(xi − xi−1)2

2

= f (xi−1)
xi − xi−1

2
+ f (xi)

xi − xi−1

2

= (xi − xi−1)
f (xi−1) + f (xi)

2
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Basic Numerical Integration Methods from Calculus The Trapezoidal Rule

So far we’ve only considered one subinterval. Putting them all together
we get ∫ b

a
f (x)dx =

n∑
i=1

∫ xi

xi−1

f (x)dx

≈
n∑

i=1

(xi − xi−1)︸ ︷︷ ︸
=h

f (xi−1) + f (xi)

2

=
h
2

n∑
i=1

(f (xi−1) + f (xi))

=
h
2

[
f (x0) + 2

n−1∑
i=1

f (xi) + f (xn)

]
= Tn(f )

This is known as the composite trapezoidal rule. Note that the interior
weights are twice those at the endpoints.
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Basic Numerical Integration Methods from Calculus Simpson’s Rule

Now we use a quadratic interpolant over two subintervals
[xi−1, xi ] ∪ [xi , xi+1]. This will lead to Simpson’s rule, i.e.,∫ xi+1

xi−1

f (x)dx ≈
∫ xi+1

xi−1

p(x)dx ,

where

p(x) =
(x − xi)(x − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
f (xi−1) +

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
f (xi)

+
(x − xi−1)(x − xi)

(xi+1 − xi−1)(xi+1 − xi)
f (xi+1).
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Basic Numerical Integration Methods from Calculus Simpson’s Rule

We can derive (see HW) the basic Simpson’s rule for just two
subintervals:∫ xi+1

xi−1

f (x)dx ≈ h
3

[f (xi−1) + 4f (xi) + f (xi+1)] ,

where h = xi+1 − xi = xi − xi−1.
The composite Simpson rule then turns out to be∫ b

a
f (x)dx =

n/2∑
i=1

∫ x2i

x2i−2

f (x)dx

≈
n/2∑
i=1

h
3
[f (x2i−2) + 4f (x2i−1) + f (x2i)]

=
h
3
[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + . . .+ 4f (xn−1) + f (xn)]

=
h
3

f (x0) + 4
n/2∑
i=1

f (x2i−1) + 2
n/2−1∑

i=1

f (x2i) + f (xn)


= Sn(f ),

where h = b−a
n . Note that for Simpson’s rule n has to be even.
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Basic Numerical Integration Methods from Calculus Newton-Cotes Formulas

We can also use a general interpolating polynomial of degree n − 1
given in Lagrange form

p(x) =
n∑

k=1

Lk (x)yk

with Lagrange basis polynomials Lk (x) =
∏n

j=1,j 6=k
x−xj
xk−xj

, k = 1, . . . ,n.

Then ∫ b

a
f (x)dx ≈

∫ b

a
p(x)dx =

∫ b

a

n∑
k=1

Lk (x)f (xk )dx

=
n∑

k=1

f (xk )

∫ b

a
Lk (x)dx =

n∑
k=1

f (xk )wk ,

where the integration weights wk =

∫ b

a
Lk (x)dx can be computed

since the integrands Lk (x) are simple polynomials.
If the interpolation nodes xk are equally spaced, the resulting formulas
are known as Newton-Cotes formulas.
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Basic Numerical Integration Methods from Calculus Newton-Cotes Formulas

Since we used polynomial interpolants on subintervals (or piecewise
polynomial interpolants on [a,b]) for all of our integration methods,
they have the following properties by construction:

The left and right endpoint methods and the midpoint method are
exact if the integrand is a (piecewise) constant function.
The composite trapezoidal rule is exact if the integrand is a
(piecewise) linear function.
The composite Simpson’s rule is exact if the integrand is a
(piecewise) quadratic function.

Remark
It turns out that the midpoint method is even exact for piecewise linear
functions, and Simpson’s rule is exact for cubic polynomials!
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Richardson Extrapolation

Outline

1 Motivation and Applications

2 Basic Numerical Integration Methods from Calculus

3 Richardson Extrapolation

4 Adaptive Quadrature in MATLAB: The Function quad

5 Integration of Discrete Data
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Richardson Extrapolation

A surprisingly simple way to improve the accuracy of many numerical
methods (not just integration!) is provided by the general idea of
Richardson extrapolation.

Here one runs the same approximation method twice to get two
numerical approximations:

Fn (or Fh), based on a subdivision into n subintervals (or intervals
of length h), and
F2n (or F h

2
), based on a subdivision into 2n subintervals (or

intervals of length h
2 ).

We will first discuss the general idea, and then look at examples for the
left and right endpoint, midpoint, and trapezoidal rules.

In the next section we discuss the MATLAB function quad which is
based on Richardson extrapolation for Simpson’s rule.
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Richardson Extrapolation

Richardson extrapolation: the general principle

Assume we have some numerical method whose output Fh
approximates an unknown quantity F according to

F = Fh +O(hp)︸ ︷︷ ︸
=Eh

(3)

for some power p ≥ 1, i.e., we have a truncation error Eh of order
O(hp).

Consider two approximate values Fh and F h
2
.

Then the truncation error at the h
2 level satisfies

E h
2
≈ c

(
h
2

)p

= c
hp

2p ≈
1
2p Eh. (4)
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Richardson Extrapolation

Therefore, using (3) and the error relation (4) we have

F − F h
2

(3) for h
2= E h

2

(4)
≈ 1

2p Eh
(3) for h

=
1
2p (F − Fh).

This implies

F
(

1− 1
2p

)
≈ F h

2
− 1

2p Fh

or

F ≈ 2p

2p − 1

[
F h

2
− Fh

2p

]
.

The latter can be rewritten as

F ≈ F h
2

+
1

2p − 1

[
F h

2
− Fh

]
. (5)

This is the Richardson extrapolation formula, a weighted average of F h
2

and Fh.
It is considerably more accurate than either F h

2
or Fh. In fact, it is

constructed to yield at least O(hp+1) accuracy.
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This is the Richardson extrapolation formula, a weighted average of F h
2

and Fh.
It is considerably more accurate than either F h

2
or Fh. In fact, it is

constructed to yield at least O(hp+1) accuracy.
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Richardson Extrapolation

Remark
From the Richardson extrapolation formula (5) we see that

E h
2
≈ 1

2p − 1

[
F h

2
− Fh

]
.

Therefore, we can use (4) to provide an estimate for the truncation
error Eh, namely

Eh ≈ 2pE h
2
≈ 2p

2p − 1

[
F h

2
− Fh

]
.

Note that it is better to be conservative and use this latter error
estimate at the h level.
We will use this idea to obtain an adaptive integration algorithm in the
next section.
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Richardson Extrapolation

Example
We know that the left endpoint method

Ln(f ) =
n∑

i=1

hf (xi−1)

is order O(h) accurate so that p = 1.

According to our discussion above we can use the Richardson
extrapolant

L ≈ 2L2n − Ln

to improve the accuracy of the left endpoint method.
The truncation error of Ln can be estimated via

En ≈ 2 [L2n − Ln] .

This and similar formulas for the other integration methods are
illustrated in the Maple worksheet Integration.mw.
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Adaptive Quadrature in MATLAB: The Function quad

The main ingredient for MATLAB’s basic numerical integration function
quad is Richardson extrapolation of the basic Simpson rule.

If S2 is Simpson’s rule applied to x0 = a, x1 = a+b
2 and x2 = b, i.e.,

S2 =
h
3

[f (x0) + 4f (x1) + f (x2)] ,

with1 h = b−a
2 , and S4 is a refined (composite) Simpson’s rule for the

five points x̃i = a + i h
2 , i = 0,1, . . . ,4, i.e.,

S4 =
h
6

[f (x̃0) + 4f (x̃1) + 2f (x̃2) + 4f (x̃3) + f (x̃4)] ,

then Richardson’s formula (5) with p = 4 yields

S = S4 +
1

15
(S4 − S2).

This is in fact a sixth-order, O(h6), Newton-Cotes formula (Weddle’s
rule).

1Note that in [NCM] h = b − a, so formulas differ slightly
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Adaptive Quadrature in MATLAB: The Function quad

The main part of quadtx.m is the recursively called function
quadtxstep that performs the extrapolated Simpson rule and refines
the intervals when needed:

h = b - a;
c = (a + b)/2;
fd = F((a+c)/2,varargin{:});
fe = F((c+b)/2,varargin{:});
Q1 = h/6 * (fa + 4*fc + fb); % Simpson S_2
Q2 = h/12 * (fa + 4*fd + 2*fc + 4*fe + fb); % Simpson S_4
if abs(Q2 - Q1) <= tol % error estimate small enough

Q = Q2 + (Q2 - Q1)/15; % extrapolate
else % subdivide at interval midpoint c

[Qa,ka] = quadtxstep(F, a, c, tol, fa, fd, fc, varargin{:});
[Qb,kb] = quadtxstep(F, c, b, tol, fc, fe, fb, varargin{:});
Q = Qa + Qb;

end

We illustrate the use of quadtx in the MATLAB file QuadDemo.m.
The [NCM] program quadgui illustrates graphically how the interval is
refined adaptively.
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Adaptive Quadrature in MATLAB: The Function quad

The latest addition to MATLAB’s quadrature methods is the function
quadgk developed by Larry Shampine.
This method has a number of advantages over quad:

It is vectorized to do the function evaluations for all subinterval
simultaneously.
It starts with a higher resolution, and is therefore less affected by
“difficult” integrands.
It takes relative error tolerances.
It can handle infinite intervals and endpoint singularities.
Most of all, quadgk is much faster and more reliable than quad or
quadl.

quadgk is described in the recent paper [Shampine] (where the
method is referred to as quadva).
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Integration of Discrete Data
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Integration of Discrete Data

If the integrand is given only in the form of discrete data, then our fancy
adaptive methods will not work (since we can’t choose where we
evaluate the integrand — we have to work with the given values).

The simplest solution is given by a composite trapezoidal rule (integral
of piecewise linear interpolant):

T =
n−1∑
i=1

hi
yi + yi+1

2
,

where hi = xi+1 − xi . The entire MATLAB code for this method is
(assuming the data vectors x and y are given)

T = sum(diff(x).*(y(1:end-1)+y(2:end))/2)

Note how vectorization makes the code very compact. This code is the
basis for the MATLAB command trapz.
One can also implement integration of other interpolants (see [NCM]
for a discussion of pchip and spline interpolants).
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