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Motivation and Applications

Data Fitting

Earlier we discussed the problem of fitting a given set of data by
interpolation. However, if the data contain some noise (such as
measurement errors in a physical experiment), then we may not want
to exactly fit the data.
Instead we may want to approximate the data via a linear least
squares (or linear regression) fit.
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Motivation and Applications
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Example
Fit the data

x 1 2 3 4 5
y 1.3 3.5 4.2 5.0 7.0

with a best fitting line.

Idea
Minimize the sum of the squares of the vertical distances of line from
the data points.
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Motivation and Applications The Normal Equations

The Normal Equations

Assume the line is of the form

L(x) = c1x + c2.

If we were to interpolate the data, i.e., enforce

L(xi) = yi , i = 1, . . . ,m,

we would get an overdetermined system of linear equations (as soon
as m > 2):

Ac = y ,

where

A =


x1 1
x2 1
...

...
xm 1

 , c =

[
c1
c2

]
, y =


y1
y2
...

ym

 .
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Motivation and Applications The Normal Equations

The Normal Equations (cont.)

Minimizing the sums of the squares of the vertical distances from the
line to the data points can be expressed as

min
c1,c2

m∑
i=1

[(c1xi + c2)− yi ]
2 ⇐⇒ min

c1,c2
‖Ac − y‖22

Since the norm is related to an inner product by

‖v‖2 =
√

vT v

we want to find the coefficient vector c that minimizes

(Ac − y)T (Ac − y) = (cT AT − yT )(Ac − y)

= cT AT Ac − cT AT y − yT Ac + yT y
= cT AT Ac − 2cT AT y + yT y .

The last equality holds because cT AT y = yT Ac is a scalar quantity
(and therefore equal to its transpose).
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Motivation and Applications The Normal Equations

The Normal Equations (cont.)

From Calculus we know that a necessary1 condition for the minimum is
that the partials with respect to c1 and c2 are zero.
In vector notation this means

2AT Ac − 2AT y = 0

or
AT Ac = AT y .

This system of linear equations is known as the normal equations.

Remark
The normal equations characterize the least squares solution of the
system Ac = y . They are important for theoretical purposes and
provide simple notation.
However, they are not recommended for serious computations!

1and since the function is quadratic in c also sufficient
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Motivation and Applications The Normal Equations

Do not compute with the normal equations!

Example
Fit the data

x 10 10.2 10.4 10.6 10.8 11
y 0 0.004 0.016 0.036 0.064 0.1

with a quadratic polynomial Q(x) = c1x2 + c2x + c3.
Note that the data actually come from the function

f (x) = x2

10 − 2x + 10,

so that we should be able to recover the function exactly.
The MATLAB script LSQquad.m illustrates what happens when we use
the normal equations to solve the problem in single and double
precision.
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Motivation and Applications General Linear Least Squares Fitting

The derivation of the normal equations works analogously for any
linear approximation of the form

P(x) = c1b1(x) + c2b2(x) + . . .+ cnbn(x),

where {b1, . . . ,bn} is some set of basis functions we want to compute
the least squares fit with. This could be polynomials, trigonometric
functions, logarithms, exponentials, etc.
The matrix A is a Vandermonde-like matrix of the form

A =


b1(x1) b2(x1) . . . bn(x1)
b1(x2) b2(x2) . . . bn(x2)

...
...

...
b1(xm) b2(xm) . . . bn(xm)

 .
Usually, this is a tall and skinny matrix, i.e., m > n. In this case we
have more data points than unknown coefficients, i.e., an
over-determined linear system.
The normal equations are always given by

AT Ac = AT y .
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Motivation and Applications Using Orthogonal Bases

Question
How can we improve the conditioning of the least squares normal
equations AT Ac = AT y?

Answer
Use orthogonal basis functions to represent the least squares
approximation.

Example

Instead of using the monomial basis {x2, x ,1} as we did in
LSQquad.m, we can use the orthogonal basis
{
(
x − 21

2

)2 − 7
60 , x −

21
2 ,1}.

The MATLAB script LSQquadOrtho.m illustrates what happens when
we use the normal equations based on an orthogonal basis to solve
the previous fitting problem in single precision.

The QR decomposition (see below) produces an orthogonal matrix
that helps us solve the least squares problem in a stable way.
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The MATLAB Function polyfit

Polynomial least squares fits can be computed in MATLAB directly from
the data (without having to set up any intermediate linear systems).

The two commands required for this are
p = polyfit(x,y,n): returns the coefficients p of the degree n

polynomial

p(x) = p(1)xn + p(2)xn−1 + . . .+ p(n)x + p(n + 1)

that provides the best least squares fit to the data in x
and y.

v = polyval(p,u): evaluates the polynomial p with coefficients p at
all the values specified in u.

The MATLAB script PolyfitDemo.m illustrates the use of these two
functions for the data from the previous example and for the same data
contaminated with 10% noise.
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The MATLAB Function polyfit

The MATLAB function censusgui from [NCM] illustrates the use of
normalized data for polynomial least squares fitting of U.S. population
data.
It also uses pchip along with spline fitting, and an exponential fit of
the type

y = ceαx .

Note that it is not a good idea to use polynomials for extrapolation.

Remark
If you are interested in statistics, then [p,S] = polyfit(x,y,n)
will also provide information for error bounds on the prediction in S,
and [p,S,mu] = polyfit(x,y,n) will produce the coefficients of
a fitting polynomial in the normalized variable x̂ = (x − µ)/σ, where
µ = mu(1) is the mean of the data sites x and σ = mu(2) is the
standard deviation.
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The QR Decomposition

Theorem
Every real m × n matrix A has a QR decomposition

A = QR,

where Q is an m ×m orthogonal matrix and R is an m × n upper
triangular matrix.

Remark
There are many different ways in which the matrices Q and R can be
found. E.g., one can use

Gram-Schmidt orthogonalization (and modifications thereof),
Householder reflections, or
Givens rotations.

All of these are discussed in MATH 477. We will only investigate the
use of the QR decomposition.
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The QR Decomposition Orthogonal Matrices

Orthogonal Matrices

The m ×m matrix Q in the QR decomposition is said to be orthogonal.
This means that

its columns are orthogonal to each other, i.e., qT
i q j = 0 if i 6= j and

q i is the i th column of Q (see the example involving
LSQquadOrtho.m above),
its columns are normalized, i.e., ‖q i‖2 = 1, i = 1, . . . ,n (this is not
satisfied in LSQquadOrtho.m).

This can be summarized as

QT Q = QQT = I,

where I is the m ×m identity matrix.
Note that this implies that

Q−1 = QT — a very handy property.
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The QR Decomposition Orthogonal Matrices

Orthogonal Matrices (cont.)

Example
Verify that the matrix

Q =


1√
2

1√
3

−1√
6

0 1√
3

2√
6

1√
2

−1√
3

1√
6


is an orthogonal matrix.
We need to verify that

qT
1 q2 = 0, qT

1 q3 = 0, qT
2 q3 = 0,

qT
1 q1 = 1, qT

2 q2 = 1, qT
3 q3 = 1.

Note that the conditions in the second row are equivalent to ‖q i‖2 = 1,
i = 1,2,3.
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The QR Decomposition Orthogonal Matrices

Example (cont.)
Columns are pairwise perpendicular:

qT
1 q2 = [ 1√

2
,0, 1√

2
]


1√
3

2√
6
−1√

3

 = 1√
6
− 1√

6
= 0,

qT
1 q3 = [ 1√

2
,0, 1√

2
]


−1√

6
2√
6

1√
6

 = − 1√
12

+ 1√
12

= 0,

qT
2 q3 = [ 1√

3
, 1√

3
, −1√

3
]


−1√

6
2√
6

1√
6

 = − 1√
18

+ 2√
18
− 1√

18
= 0.
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The QR Decomposition Orthogonal Matrices

Example (cont.)
Columns are normalized:

qT
1 q1 = [ 1√

2
,0, 1√

2
]


1√
2

0
1√
2

 = 1
2 + 1

2 = 1,

qT
2 q2 = [ 1√

3
, 1√

3
, −1√

3
]


1√
3

1√
3
−1√

3

 = 1
3 + 1

3 + 1
3 = 1,

qT
3 q3 = [−1√

6
, 2√

6
, 1√

6
]


−1√

6
2√
6

1√
6

 = 1
6 + 4

6 + 1
6 = 1.
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The QR Decomposition Orthogonal Matrices

Orthogonal Matrices (cont.)

Another important property of any m ×m orthogonal matrix Q is that is
leaves the 2-norm invariant, i.e., for any m-vector x we have

‖Qx‖2 = ‖x‖2.

Proof.

‖Qx‖22 = (Qx)T (Qx)

= xT QT Qx
QT Q=I

= xT x = ‖x‖22

Remark
In fact, orthogonal matrices/transformations represent either a rotation
(if det Q = 1) or a reflection (det Q = −1), i.e., a length-preserving (or
isometric) geometric transformation. Angles are also preserved (just
compare (Qx)T (Qy) with xT y).
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The QR Decomposition Solving Linear Systems with the QR Decomposition

Consider first the square non-singular linear system Ax = b, and
assume that A has the QR decomposition A = QR.
Then

Ax = b ⇐⇒ QRx = b.

Multiplication by Q−1 = QT yields

Rx = QT b.

This is an upper triangular system for the unknown vector x which can
be easily solved by back substitution (note a certain similarity with the
procedure used with the LU decomposition earlier).

In fact, QR decomposition is in most cases the preferred method for
the solution of linear systems. It provides a good balance of numerical
stability (better than LU) and efficiency (worse than LU).
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The QR Decomposition Solving Least Squares Problems with the QR Decomposition

Recall that the least squares solution of the overdetermined linear
system Ac = y is given by the coefficient vector c that minimizes the
norm of the 2-norm residual ‖Ac − y‖2.
Using the QR decomposition of A this becomes

‖QRc − y‖2
QQT =I

= ‖QRc −QQT y‖2 = ‖Q(Rc −QT y)‖2.

Now remember that the orthogonal matrix Q leaves the 2-norm
invariant (‖Qx‖2 = ‖x‖2). Therefore we have

‖Q(Rc −QT y)‖2 = ‖Rc −QT y‖2.

Finally, in the overdetermined system case (with m > n) the last m − n
rows of the upper triangular matrix R are in fact all zero.
Therefore, the least squares solution of Ac = y is given by the solution
of the square upper triangular system (provided A has full (column) rank n)

R̂c = z ,

where R̂ = R(1 :n,1 :n) and z = QT (1 :n, :)y .
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The QR Decomposition Solving Least Squares Problems with the QR Decomposition

Example
Again we use the data

x 10 10.2 10.4 10.6 10.8 11
y 0 0.004 0.016 0.036 0.064 0.1

(without and with noise) and fit with a quadratic polynomial
P(x) = c1x2 + c2x + c3.
The MATLAB script LSQquadQR.m illustrates how we can use the
method described above based on the QR decomposition of A to
obtain the fit.
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The SVD

Theorem
Let A be a complex m × n matrix. A has a singular value
decomposition of the form

A = UΣV∗,

where Σ is a uniquely determined m × n (real) diagonal matrix, U is an
m ×m unitary matrix, and V is an n × n unitary matrix.

Remark
The entries σi of the diagonal matrix Σ are the singular values of A
(recall our earlier discussion of the matrix 2-norm).
Note that this theorem guarantees that every matrix can be
diagonalized!
The theorem is very general. If A is a real matrix, then “unitary”
translates to “orthogonal” and “∗” (Hermitian conjugate) to “T ”.
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The SVD Least Squares

Using the SVD to solve ‖Ac − y‖2 → min
Assume A is real m × n, m ≥ n, and rank(A) = r = n.
Compute reduced SVD

A = ÛΣ̂VT ,

with Û = U(:,1 : r) an m × r real matrix with orthogonal columns, real
diagonal Σ̂ = Σ(1 : r ,1 : r), and real orthogonal r × r matrix V.
Use normal equations

AT Ac = AT y ⇐⇒ (V Σ̂T︸︷︷︸
=Σ̂

ÛT )(Û︸ ︷︷ ︸
=I

Σ̂VT )c = V Σ̂T︸︷︷︸
=Σ̂

ÛT y

⇐⇒ VΣ̂2VT c = VΣ̂ÛT y
(Σ̂−1VT )×⇐⇒ Σ̂VT c = ÛT y .

The least squares solution is given by

c = VΣ̂−1ÛT︸ ︷︷ ︸
=A†, pseudoinverse

y .
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The SVD The SVD in MATLAB

According to the derivation presented on the previous slide we can
follow the following algorithm to solve the least squares problem of
minimizing ‖Ac − y‖2:

1 Solve the diagonal system

Σ̂z = ÛT y

for z . Here Σ̂ = Σ(1 : r ,1 : r) and Û = U(:,1 : r) contains the first r
columns of U (reduced SVD).

2 Compute the coefficients c via

VT c = z ⇐⇒ c = Vz .

Alternatively, we can directly use the pseudoinverse to get the least
squares solution.
Both approaches are illustrated in the MATLAB script LSQquadSVD.m.
In MATLAB [U S V] = svd(A) produces the factors of the SVD, and
the pseudoinverse is given by pinv(A).
More details are provided in Chapters 5 and 10 of [NCM] as well as in
MATH 477.
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The SVD Summary of SVD

Why is the SVD so fundamental?

The fact that U and V are unitary (orthogonal) is
fundamental for geometric insights .

The fact that Σ is diagonal provides answers to important
questions in linear algebra

number of non-zero singular values, r = rank(A)
range(A) = range(U(:,1 : r)), null(A) = range(V(:, r + 1 :n))

The SVD is stable, i.e., small changes in A will cause only small
changes in the SVD (in fact, this is the most stable matrix
decomposition method).
The SVD is optimal in the sense that it provides the

best low-rank approximations of A .
Thanks to Gene Golub there are efficient and stable algorithms to
compute the SVD.
A new algorithm that very efficiently finds all singular values with
high relative accuracy was found recently by [Drmač & Veselić].
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The SVD Orthonormal Bases

v2

v1

K1.0 K0.5 0 0.5 1.0

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

s1u1
s2u2

K2 K1 0 1 2

K2

K1

1

2

Figure: ON bases for row space and column space of A.

Return
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The SVD Low Rank Approximations

Theorem
The m × n matrix A can be decomposed into a sum of r rank-one
matrices:

A =
r∑

j=1

σjujv∗j .

Moreover, the best 2-norm approximation of rank ν (0 ≤ ν ≤ r ) to A is
given by

Aν =
ν∑

j=1

σjujv∗j .

In fact,
‖A− Aν‖2 = σν+1.

This theorem is very useful for applications such as image
compression and is illustrated in the MATLAB script SVD_movie.m
(see also imagesvd.m from [NCM]). Return
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