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Motivation and Applications

We studied systems of linear equations in Chapter 2, and convinced
ourselves of the importance for doing this.

Many real-life phenomena are more accurately described by nonlinear
models. Thus, we often find ourselves asking:

Question
For what value(s) of x is the equation f (x) = 0 satisfied.

Remark
Such an x is called a root (or zero) of the nonlinear equation f (x) = 0.

Example
Find the first positive root of the Bessel function

J0(x) =
∞∑

k=0

(−1)k

22k (k !)2 x2k .
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Motivation and Applications

A more complicated example arises when the function f is given only
indirectly as the solution of a differential equation.

Example
Consider the skydive model of Chapter 1. We can use a numerical
method to find the velocity at any time t ≥ 0. At what time will the
skydiver hit the ground?

Solution
First we need to find the position (altitude) for any time t from the
initial position and calculated velocity (essentially the solution of
another differential equation).
Then we need to find the root of the position function — a rather
complex procedure.
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Motivation and Applications

Most of this chapter will be concerned with the solution of a single
nonlinear equation. However, systems of nonlinear equations are also
important (and difficult) to solve.

Example
Consider a missile M following the parametrized path

xM(t) = t , yM(t) = 1− e−t ,

and a missile interceptor I whose launch angle α we want to determine
so that it will intersect the missile’s path. Let the parametrized path for
the interceptor be given as

xI(t) = 1− t cosα, yI(t) = t sinα− t2

10 .

Thus, we want to solve the nonlinear system{
t = 1− t cosα

1− e−t = t sinα− t2

10
or

{
f (t , α) = t − 1 + t cosα = 0
g(t , α) = 1− e−t − t sinα+ t2

10 = 0.
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Bisection

Theorem (Intermediate Value Theorem)

If f is continuous on an interval [a,b] and f (a) and f (b) are of opposite
sign, then f has at least one root in [a,b].

This theorem provides the basis for a fool-proof — but rather slow —
trial-and-error algorithm for finding a root of f :

Take the midpoint x of the interval [a,b].
If f (x) = 0 we’re done.
If not

Repeat entire procedure with either [a,b] = [a, x ] or [a,b] = [x ,b]
(making sure that f (a) and f (b) have opposite signs).
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Bisection MATLAB code for Bisection

Bisection Algorithm
while abs(b-a) > eps*abs(b)

x = (a + b)/2;
if sign(f(x)) == sign(f(b))

b = x; % set [a,x] as new [a,b]
else

a = x; % set [x,b] as new [a,b]
end

end

The termination condition while abs(b-a) > eps*abs(b)
ensures that the search continues until the root is found to within
machine accuracy eps.
See BisectDemo.m and bisect.m for an illustration.

Remark
The algorithm as coded above should always — independent of f —
converge in 52 iterations since the IEEE standard uses 52 bits for the
mantissa, and we compute the answer with 1 bit accuracy.
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Newton’s Method

By Taylor’s theorem (assuming f ′′(ξ) exists) we have

f (x) = f (x0) + (x − x0)f ′(x0) +
(x − x0)

2

2
f ′′(ξ).

So, for values of x0 reasonably close to x we can approximate

f (x) ≈ f (x0) + (x − x0)f ′(x0).

Since we are trying to find a root of f , i.e., we are hoping that f (x) = 0,
we have

0 ≈ f (x0) + (x − x0)f ′(x0) ⇐⇒ x − x0 ≈ −
f (x0)

f ′(x0)
.

This motivates the Newton iteration formula

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0,1, . . . ,

where an initial guess x0 is required to start the iteration.
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Newton’s Method

Graphical Interpretation

Consider the tangent line to the graph of f at xn:

y − f (xn) = f ′(xn)(x − xn) =⇒ y = f (xn) + (x − xn)f ′(xn).

To see how this relates to Newton’s method, set y = 0 and solve for x :

0 = f (xn) + (x − xn)f ′(xn) ⇐⇒ x = xn −
f (xn)

f ′(xn)
.
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Newton’s Method MATLAB code for Newton’s Method

Newton Iteration

while abs(x - xprev) > eps*abs(x)
xprev = x;
x = x - f(x)/fprime(x);

end

See NewtonDemo.m and newton.m for an illustration. The Maple file
NewtonDemo.mw contains an animated graphical illustration of the
algorithm.

Remark
Convergence of Newton’s method depends quite a bit on the choice of
the initial guess x0. If successful, the algorithm above converges very
quickly to within machine accuracy.
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Newton’s Method Convergence of Newton’s Method

Problem
How quickly does Newton’s method converge? How fast does the error
decrease from one iteration to the next?

Solution
Let’s assume f ′′(x) exists and f ′(x) 6= 0 for all x of interest.

Denote the root of f by x∗,
and the error in iteration n by en = xn − x∗.

Then
en+1 = xn+1 − x∗

= xn −
f (xn)

f ′(xn)
− x∗

= en −
f (xn)

f ′(xn)

=
enf ′(xn)− f (xn)

f ′(xn)
(1)
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Newton’s Method Convergence of Newton’s Method

Solution (cont.)
On the other hand, a Taylor expansion gives

f (x∗) = f (xn − en)

Rearrange:

enf ′(xn)− f (xn) =
e2

n
2

f ′′(ξ) (2)

(2) in (1):

en+1 =
e2

n
2 f ′′(ξ)
f ′(xn)

.

If xn is close enough to x∗ (so that also ξ is close to x∗) we have

en+1 ≈
f ′′(x∗)
2f ′(x∗)

e2
n =⇒ en+1 = O(e2

n).

This is known as quadratic convergence, and implies that the number
of correct digits approximately doubles in each iteration.
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Secant Method

Problem
A significant drawback of Newton’s method is its need for f ′(xn).

Solution
We approximate the value of the derivative f ′(xn) by the slope sn given
as

sn =
f (xn)− f (xn−1)

xn − xn−1
.

Then we get the iteration formula

xn+1 = xn −
f (xn)

sn
, n = 1,2, . . . .

Since sn is the slope of the secant line from (xn−1, f (xn−1)) to
(xn, f (xn)) this method is called the secant method.

Remark
The secant method requires two initial guesses, x0 and x1.
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Secant Method MATLAB code for the Secant Method

Secant Method
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while abs(b-a) > eps*abs(b)
c = a;
a = b;
b = b + (b - c)/(f(c)/f(b)-1);

end
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Secant Method MATLAB code for the Secant Method

Secant Method
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while abs(b-a) > eps*abs(b)
c = a;
a = b;
b = b + (b - c)/(f(c)/f(b)-1);

end

Note that xn−xn−1
f (xn−1)

f (xn)
−1

=
xn−xn−1

f (xn−1)−f (xn)
f (xn)

=
(xn−xn−1)f (xn)
f (xn−1)−f (xn)

= f (xn)
sn
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Secant Method MATLAB code for the Secant Method

Secant Method
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while abs(b-a) > eps*abs(b)
c = a;
a = b;
b = b + (b - c)/(f(c)/f(b)-1);

end

Note that xn−xn−1
f (xn−1)

f (xn)
−1

=
xn−xn−1

f (xn−1)−f (xn)
f (xn)

=
(xn−xn−1)f (xn)
f (xn−1)−f (xn)

= f (xn)
sn

See SecantDemo.m and secant.m for an
illustration. The Maple file
SecantDemo.mws contains an animated
graphical illustration of the algorithm.
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Secant Method MATLAB code for the Secant Method

Secant Method
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while abs(b-a) > eps*abs(b)
c = a;
a = b;
b = b + (b - c)/(f(c)/f(b)-1);

end

Note that xn−xn−1
f (xn−1)

f (xn)
−1

=
xn−xn−1

f (xn−1)−f (xn)
f (xn)

=
(xn−xn−1)f (xn)
f (xn−1)−f (xn)

= f (xn)
sn

See SecantDemo.m and secant.m for an
illustration. The Maple file
SecantDemo.mws contains an animated
graphical illustration of the algorithm.

Remark
Convergence of the secant method also depends on the choice of
initial guesses. If successful, the algorithm converges superlinearly,
i.e., en+1 = O(eφn ), where φ = (

√
5 + 1)/2, the golden ratio.
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Inverse Quadratic Interpolation

We can interpret the secant method as using the linear interpolant to
the data (xn−1, f (xn−1)), (xn, f (xn)) to approximate the zero of the
function f .

Question
Wouldn’t it be better (if possible) to use a quadratic interpolant to three
data points to get this job done?

Answer
In principle, “yes”. The resulting method is called inverse quadratic
interpolation (IQI).

IQI is like an immature race horse. It moves very quickly
when it is near the finish line, but its global behavior can be
erratic [NCM].
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Inverse Quadratic Interpolation

How does inverse quadratic interpolation work?

Assume we have 3 data points: (a, f (a)), (b, f (b)), (c, f (c)).

Instead of interpolating the data directly with a quadratic polynomial we
reverse the roles of x and y since then we can evaluate the resulting
polynomial at y = 0; and this gives an approximation to the root of f !
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Inverse Quadratic Interpolation MATLAB code for the Inverse Quadratic Interpolation Method

IQI Method

while abs(c-b) > eps*abs(c)
x = polyinterp([f(a),f(b),f(c)],[a,b,c],0);
a = b;
b = c;
c = x;

end

See the MATLAB script IQIDemo.m which calls the function iqi.m.

Remark
One of the major challenges for the IQI method is to ensure that the
function values, i.e., f (a), f (b) and f (c), are distinct — since we are
using them as our interpolation nodes.
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Root Finding in MATLAB: The Function fzero

The MATLAB code fzerotx.m from [NCM] is based on a combination
of three of the methods discussed above: bisection, secant, and IQI.

Start with a and b so that f (a) and f (b) have opposite signs.
Use a secant step to give c between a and b.
Repeat the following steps until |b − a| < ε|b| or f (b) = 0.
Arrange a, b, and c so that

f (a) and f (b) have opposite signs,
|f (b)| ≤ |f (a)|,
c is the previous value of b.

If c 6= a, consider an IQI step.
If c = a, consider a secant step.
If the IQI or secant step is in the interval [a,b], take it.
If the step is not in the interval, use bisection.

The algorithm always works and combines the robustness of the
bisection method and the speed of the secant and IQI methods.
This algorithm is also known as Brent’s method.
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Root Finding in MATLAB: The Function fzero

Root finding in MATLAB (cont.)

A step-by-step exploration of the fzero algorithm is possible with
fzerogui.m from [NCM].
To find the first positive root of J0 use

fzerogui(@(x) besselj(0,x),[0,4]),

where @(x) besselj(0,x) is an anonymous function of the one
variable x (while the argument @besselj would be a function handle
for a function of two variables – and therefore confuse the routine
fzerogui).
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Newton’s Method for Systems of Nonlinear Equations

Example
We now want to solve a nonlinear system such as

f (t , α) = t − 1 + t cosα = 0
g(t , α) = 1− e−t − t sinα+ t2

10 = 0.

Earlier we derived the basic Newton method from the truncated Taylor
expansion (note that here I’ve changed the earlier notation of x0 to c)

f (x) = f (c) + (x − c)f ′(c) +
(x − c)2

2
f ′′(ξ).

Then
f (x) ≈ f (c) + (x − c)f ′(c)

f (x)=0⇐⇒ x ≈ c − f (c)
f ′(c)

.

Using vector notation, our nonlinear system above can be written as

f (x) = 0,

where x = [t , α]T and f = [f ,g]T .
We therefore need a multivariate version of Newton’s method.

fasshauer@iit.edu MATH 350 – Chapter 4 27

http://math.iit.edu/~fass


Newton’s Method for Systems of Nonlinear Equations

Example
We now want to solve a nonlinear system such as

f (t , α) = t − 1 + t cosα = 0
g(t , α) = 1− e−t − t sinα+ t2

10 = 0.

Earlier we derived the basic Newton method from the truncated Taylor
expansion (note that here I’ve changed the earlier notation of x0 to c)

f (x) = f (c) + (x − c)f ′(c) +
(x − c)2

2
f ′′(ξ).

Then
f (x) ≈ f (c) + (x − c)f ′(c)

f (x)=0⇐⇒ x ≈ c − f (c)
f ′(c)

.

Using vector notation, our nonlinear system above can be written as

f (x) = 0,

where x = [t , α]T and f = [f ,g]T .
We therefore need a multivariate version of Newton’s method.

fasshauer@iit.edu MATH 350 – Chapter 4 27

http://math.iit.edu/~fass


Newton’s Method for Systems of Nonlinear Equations

Example
We now want to solve a nonlinear system such as

f (t , α) = t − 1 + t cosα = 0
g(t , α) = 1− e−t − t sinα+ t2

10 = 0.

Earlier we derived the basic Newton method from the truncated Taylor
expansion (note that here I’ve changed the earlier notation of x0 to c)

f (x) = f (c) + (x − c)f ′(c) +
(x − c)2

2
f ′′(ξ).

Then
f (x) ≈ f (c) + (x − c)f ′(c)

f (x)=0⇐⇒ x ≈ c − f (c)
f ′(c)

.

Using vector notation, our nonlinear system above can be written as

f (x) = 0,

where x = [t , α]T and f = [f ,g]T .

We therefore need a multivariate version of Newton’s method.

fasshauer@iit.edu MATH 350 – Chapter 4 27

http://math.iit.edu/~fass


Newton’s Method for Systems of Nonlinear Equations

Example
We now want to solve a nonlinear system such as

f (t , α) = t − 1 + t cosα = 0
g(t , α) = 1− e−t − t sinα+ t2

10 = 0.

Earlier we derived the basic Newton method from the truncated Taylor
expansion (note that here I’ve changed the earlier notation of x0 to c)

f (x) = f (c) + (x − c)f ′(c) +
(x − c)2

2
f ′′(ξ).

Then
f (x) ≈ f (c) + (x − c)f ′(c)

f (x)=0⇐⇒ x ≈ c − f (c)
f ′(c)

.

Using vector notation, our nonlinear system above can be written as

f (x) = 0,

where x = [t , α]T and f = [f ,g]T .
We therefore need a multivariate version of Newton’s method.

fasshauer@iit.edu MATH 350 – Chapter 4 27

http://math.iit.edu/~fass


Newton’s Method for Systems of Nonlinear Equations

For a single function f of m variables we would need the expansion

f (x) = f (c) + ((x − c)T∇)f (c) + 1
2
((x − c)T∇)2f (ξ),

where ∇ =
[
∂
∂x1
, ∂
∂x2
, . . . , ∂

∂xm

]T
is the gradient operator.

Example

If we have only m = 2 variables, i.e., x = [x1, x2]
T , this becomes

f (x1, x2) = f (c1, c2) +

(
(x1 − c1)

∂

∂x1
+ (x2 − c2)

∂

∂x2

)
f (c1, c2)

+
1
2

(
(x1 − c1)

∂

∂x1
+ (x2 − c2)

∂

∂x2

)2
f (ξ1, ξ2)

= f (c1, c2) + (x1 − c1)
∂f
∂x1

(c1, c2) + (x2 − c2)
∂f
∂x2

(c1, c2)

+

(
(x1 − c1)

2

2
∂2

∂x2
1
+ (x1 − c1)(x2 − c2)

∂2

∂x1∂x2
+

(x2 − c2)
2

2
∂2

∂x2
2

)
f (ξ1, ξ2).
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Newton’s Method for Systems of Nonlinear Equations

Example (cont.)
Therefore, we can approximate f by

f (x1, x2) ≈ f (c1, c2) + (x1 − c1)
∂f
∂x1

(c1, c2) + (x2 − c2)
∂f
∂x2

(c1, c2)

Back to more compact operator notation we have

f (x) ≈ f (c) + ((x − c)T∇)f (c).

Note that this approximation is a linearization of f and in fact denotes
the tangent plane to the graph of f at the point c.
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Newton’s Method for Systems of Nonlinear Equations

More generally, we have the multivariate Taylor expansion:

f (x) =
n∑

k=0

1
k !

((x − c)T∇)k f (c) + En+1(x). (3)

Here the remainder is

En+1(x) =
1

(n + 1)!
((x − c)T∇)n+1f (ξ)

where ξ = c + θ(x − c) with 0 < θ < 1 a point somewhere on the line

connecting c and x , and ∇ =
[
∂
∂x1
, ∂
∂x2
, . . . , ∂

∂xm

]T
is the gradient

operator as before.

Remark
Note, however, that this slide is added as a reference/reminder only
and is not required for the derivation of the multivariate Newton
method.
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Newton’s Method for Systems of Nonlinear Equations

Now we want to tackle the full problem, i.e., we want to solve the
following (square) system of nonlinear equations:

f1(x1, x2, . . . , xm) = 0,
f2(x1, x2, . . . , xm) = 0,

... (4)
fm(x1, x2, . . . , xm) = 0.

To derive Newton’s method for (4) we write it in the form,

fi(x) = 0, i = 1, . . . ,m.

By linearizing fi , i = 1, . . . ,m, as discussed above we have

fi(x) ≈ fi(c) + ((x − c)T∇)fi(c).
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Newton’s Method for Systems of Nonlinear Equations

Since fi(x) = 0 we get

−fi(c) ≈ ((x − c)T∇)fi(c)

= (x1 − c1)
∂fi
∂x1

(c) + (x2 − c2)
∂fi
∂x2

(c) + . . .+ (xm − cm)
∂fi
∂xm

(c).

Therefore, we have a linear system for the unknown approximate root
x of (4):

− f1(c1, . . . , cm) = (x1 − c1)
∂f1
∂x1

(c1, . . . , cm) + . . .+ (xm − cm)
∂f1
∂xm

(c1, . . . , cm),

−f2(c1, . . . , cm) = (x1 − c1)
∂f2
∂x1

(c1, . . . , cm) + . . .+ (xm − cm)
∂f2
∂xm

(c1, . . . , cm),

... (5)

−fm(c1, . . . , cm) = (x1 − c1)
∂fm
∂x1

(c1, . . . , cm) + . . .+ (xm − cm)
∂fm
∂xm

(c1, . . . , cm).
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Newton’s Method for Systems of Nonlinear Equations

To simplify notation a bit we now introduce h = [h1, . . . ,hm]
T = x − c,

and note that (5) is a linear system for h of the form

J(c)h = −f (c),

where f = [f1, . . . , fm]T and

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xm

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xm


is called the Jacobian of f .

Since h = x − c or x = c + h we see that h is an update to the
previous approximation c of the root x .
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Newton’s Method for Systems of Nonlinear Equations

Algorithm

Newton’s method for square nonlinear systems is performed by
Input f , J, x (0)

for n = 0,1,2, . . . do
Solve J(x (n))h = −f (x (n)) for h
Update x (n+1) = x (n) + h

end
Output x (n+1)

Remark
If we symbolically write f ′ instead of J, then the Newton iteration
becomes

x (n+1) = x (n) −
[
f ′(x (n))

]
︸ ︷︷ ︸

matrix

−1
f (x (n)),

which looks just like the Newton iteration formula for the single
equation/single variable case.
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Newton’s Method for Systems of Nonlinear Equations

Example
Solve the missile intercept problem

t − 1 + t cosα = 0
1− e−t − t sinα+ t2

10 = 0.

Here

f (t , α) =
[

f1(t , α)
f2(t , α)

]
=

[
t − 1 + t cosα

1− e−t − t sinα+ t2

10

]
and

J(t , α) =

[
∂f1
∂t

∂f1
∂α

∂f2
∂t

∂f2
∂α

]
(t , α) =

[
1 + cos(α) −t sin(α)

e−t − sin(α) + t/5 −t cos(α)

]
.

This example is illustrated in the MATLAB script NewtonmvDemo.m
which requires newtonmv.m, missile_f.m and missile_j.m.
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Newton’s Method for Systems of Nonlinear Equations

Example
Solve

x2 + y2 = 4
xy = 1,

which corresponds to finding the intersection points of a circle and a
hyperbola in the plane.

Here

f (x , y) =
[

f1(x , y)
f2(x , y)

]
=

[
x2 + y2 − 4

xy − 1

]
and

J(x , y) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
(x , y) =

[
2x 2y
y x

]
.

This example is also illustrated in the MATLAB script
NewtonmvDemo.m. The files circhyp_f.m and circhyp_j.m are
also needed.
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Newton’s Method for Systems of Nonlinear Equations

Remark
1 Newton’s method requires the user to input the m ×m Jacobian

matrix (which depends on the specific nonlinear system to be
solved). This is rather cumbersome.

2 In each iteration an m×m (dense) linear system has to be solved.
This makes Newton’s method very expensive and slow.

3 For “good” starting values, Newton’s method converges
quadratically to simple zeros, i.e., solutions for which J−1(z)
exists.

4 Also, there is no built-in MATLAB code for nonlinear systems.
However, the Optimization Toolbox (part of the student version)
has a function fsolve that can be used for this purpose (note
that it does not require the Jacobian of f ). Try, e.g.,
fsolve(@circhyp_f, [-3 1.5]).

5 More details for nonlinear systems are provided in MATH 477
and/or MATH 478.
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Optimization

A problem closely related to that of root finding is the need to find a
maximum or minimum of a given function f .

For a continuous function of one variable this means that we need to
find the critical points, i.e., the roots of the derivative of f .

Since we decided earlier that Newton’s method (which requires
knowledge of f ′) is in many cases too complicated and costly to use,
we would again like to find a method which can find the minimum of f
(or of −f if we’re interested in finding the maximum of f ) on a given
interval without requiring knowledge of f ′.

The final MATLAB function will again be a robust hybrid method.
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Optimization Golden Section Search

Problem
Use the bisection strategy to compute a minimum of f .

Simple bisection doesn’t work:

We need to trisect the interval.
Now, since f ((a + 2b)/3) < f ((2a + b)/3) we can limit our search to
[(2a + b)/3,b].
This strategy would work, but is inefficient since (a + 2b)/3 can’t be
used for the next trisection step.
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Optimization Golden Section Search

Golden Section Search

Want: an efficient trisection algorithm.

What to do: pick the two interior trisection points so that they can be
re-used in the next iteration (along with their associated
function values, which may have been costly to obtain).

Assume interior points are

u = (1− ρ)a + ρb = a + ρ(b − a)
v = ρa + (1− ρ)b = b − ρ(b − a),

where 0 < ρ < 1 is a ratio to be determined.
If, for example, the interval in the next iteration is [u,b] with interior
point v , then we want ρ to be such that the position of v relative to u
and b is the same as that of u was to a and b in the previous iteration.
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Optimization Golden Section Search

Golden Section Search (cont.)

Therefore, we want b − u
v − u

=
b − a
u − a

Def u,v⇐⇒ b − (a + ρ(b − a))
(b − ρ(b − a))− (a + ρ(b − a))

=
b − a

(a + ρ(b − a))− a

⇐⇒ (b − a)(1− ρ)
(b − a)(1− 2ρ)

=
b − a
ρ(b − a)

⇐⇒ (1− ρ)
(1− 2ρ)

=
1
ρ

⇐⇒ ρ(1− ρ) = 1− 2ρ
⇐⇒ ρ2 − 3ρ+ 1 = 0

The solution in (0,1) is
ρ = 3−

√
5

2 ≈ 0.381966.

Since ρ = 2− φ, where φ = 1+
√

5
2 ≈ 1.618034 is the golden ratio, the

method is called the golden section search.
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Golden Section Search (cont.)

fasshauer@iit.edu MATH 350 – Chapter 4 43

http://math.iit.edu/~fass


Optimization Golden Section Search

Golden Section Search (cont.)

fasshauer@iit.edu MATH 350 – Chapter 4 43

http://math.iit.edu/~fass


Optimization Golden Section Search

Golden Section Search (cont.)

fasshauer@iit.edu MATH 350 – Chapter 4 43

http://math.iit.edu/~fass


Optimization Golden Section Search

Golden Section Search (cont.)

fasshauer@iit.edu MATH 350 – Chapter 4 43

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

While golden section search is a fool-proof algorithm that will always
find the minimum of a unimodular1 continuous function provided the
initial interval [a,b] is chosen so that it contains the minimum, it is very
slow. To reduce the interval length to machine accuracy eps, 75
iterations are required.

A faster — and just as robust — algorithm consists of
golden section search (if necessary),
parabolic interpolation (when possible).

This algorithm, called fminbnd in MATLAB, is also due to Richard
Brent.

If f has several minima on [a,b], then fminbnd may not find the global
minimum.

For an illustration see the MATLAB script FminDemo.m which calls
fmintx.m from [NCM].

1a function is unimodular if it has a single extremum on [a, b]
fasshauer@iit.edu MATH 350 – Chapter 4 44

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

While golden section search is a fool-proof algorithm that will always
find the minimum of a unimodular1 continuous function provided the
initial interval [a,b] is chosen so that it contains the minimum, it is very
slow. To reduce the interval length to machine accuracy eps, 75
iterations are required.

A faster — and just as robust — algorithm consists of
golden section search (if necessary),
parabolic interpolation (when possible).

This algorithm, called fminbnd in MATLAB, is also due to Richard
Brent.

If f has several minima on [a,b], then fminbnd may not find the global
minimum.

For an illustration see the MATLAB script FminDemo.m which calls
fmintx.m from [NCM].

1a function is unimodular if it has a single extremum on [a, b]
fasshauer@iit.edu MATH 350 – Chapter 4 44

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

While golden section search is a fool-proof algorithm that will always
find the minimum of a unimodular1 continuous function provided the
initial interval [a,b] is chosen so that it contains the minimum, it is very
slow. To reduce the interval length to machine accuracy eps, 75
iterations are required.

A faster — and just as robust — algorithm consists of
golden section search (if necessary),
parabolic interpolation (when possible).

This algorithm, called fminbnd in MATLAB, is also due to Richard
Brent.

If f has several minima on [a,b], then fminbnd may not find the global
minimum.

For an illustration see the MATLAB script FminDemo.m which calls
fmintx.m from [NCM].

1a function is unimodular if it has a single extremum on [a, b]
fasshauer@iit.edu MATH 350 – Chapter 4 44

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

While golden section search is a fool-proof algorithm that will always
find the minimum of a unimodular1 continuous function provided the
initial interval [a,b] is chosen so that it contains the minimum, it is very
slow. To reduce the interval length to machine accuracy eps, 75
iterations are required.

A faster — and just as robust — algorithm consists of
golden section search (if necessary),
parabolic interpolation (when possible).

This algorithm, called fminbnd in MATLAB, is also due to Richard
Brent.

If f has several minima on [a,b], then fminbnd may not find the global
minimum.

For an illustration see the MATLAB script FminDemo.m which calls
fmintx.m from [NCM].

1a function is unimodular if it has a single extremum on [a, b]
fasshauer@iit.edu MATH 350 – Chapter 4 44

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

While golden section search is a fool-proof algorithm that will always
find the minimum of a unimodular1 continuous function provided the
initial interval [a,b] is chosen so that it contains the minimum, it is very
slow. To reduce the interval length to machine accuracy eps, 75
iterations are required.

A faster — and just as robust — algorithm consists of
golden section search (if necessary),
parabolic interpolation (when possible).

This algorithm, called fminbnd in MATLAB, is also due to Richard
Brent.

If f has several minima on [a,b], then fminbnd may not find the global
minimum.

For an illustration see the MATLAB script FminDemo.m which calls
fmintx.m from [NCM].

1a function is unimodular if it has a single extremum on [a, b]
fasshauer@iit.edu MATH 350 – Chapter 4 44

http://math.iit.edu/~fass


Optimization Minimization in MATLAB: The Function fminbnd

An alternative approach

One could also use Newton’s method to find the critical points of f .
However, then not only f ′ needs to be known, but also f ′′.

The iteration formula to find a critical point would be

xn+1 = xn −
f ′(xn)

f ′′(xn)
, n = 0,1,2, . . . ,

with initial guess x0.

Minimization of functions of more than one variable can be attempted
with fminsearch in basic MATLAB, and with other — more powerful
— functions provided in the optimization toolbox.
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Appendix References

References I

C. Moler.
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