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A problem that arises in almost all fields of science and engineering is
to closely fit a given set of data (obtained, e.g., from experiments or
measurements).
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Motivation and Applications

A problem that arises in almost all fields of science and engineering is
to closely fit a given set of data (obtained, e.g., from experiments or
measurements).

Alternatively, we may want to represent a complicated function (that
we know only at a few points) by a simpler one. This could come up in
the evaluation of integrals with complicated integrands, or the solution
of differential equations.
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@ univariate: measurements of physical phenomenon over time

@ multivariate: measurements of physical phenomenon over a 2D or
3D spatial domain

We will concentrate on interpolation of univariate data.
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Motivation and Applications

Example
Consider the following artificial data

x[[3][1[5]6]0
yl1/-3/2[4]2

We can run InterpolationDemo.m (Which calls the program
interpgui from [NCM] with this data set) to look at different types of
interpolants.
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Motivation and Applications

Example

Consider the following time and velocity outputs from the Euler solution
of the skydive problem from Computer Assignment 1.

t \Y t v

0 0 11 | 23.9383
1 9.8100 12 | 16.1725
2 | 18.1795 || 13 | 14.1084
3 | 25.3199 || 14 | 13.5598
4 | 31.4119 || 15 | 13.4140
5 | 36.6093 || 16 | 13.3752
6 | 41.0435 || 17 | 13.3649
7 | 44.8265 || 18 | 13.3622
8 | 48.0541 19 | 13.3615
9 | 50.8077 || 20 | 13.3613
10 | 53.1569

We can continue InterpolationDemo.m to see how this set of data
is fitted by different methods.
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e Polynomial Interpolation
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:

p(x) — y1 = m(x — xq)
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:

Y2 — )1
Xo — X4

p(x) —y1=m(x—xi) or  p(x)=yr+ (x = x1).
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:

p(X) —y1 =m(x—xq)  or p(X)=y1+§2_y1(X—X1)-
2 — X
@ In Lagrange form:
X=X X — Xq
PR = X1 — Xzy1 - X2 — X4 ¥z
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- LG L G inear Interpolation
We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.

If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:

P~y =m(x—x) o p(x) =y + e Hx )

@ In Lagrange form:

X=X X — Xq
pi) = X1 — Xzy1 - X2 — X4 Y2
= Li(x)y1 + La(X)y2

with L1(x) = 2222 and Lp(x) = X221

X{—X2? Xo—Xq ©
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:
Yo —

pU) —y1 = mx—x) or  p(x) =y + L (x—x)

@ In Lagrange form:

X=X X — Xq
pi) = X1 — Xzy1 - X2 — X4 Y2
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Note that L and L, are both polynomials of degree one, so that p
is a linear polynomial, and that L1(xq1) = 1, Lo(x1) =0, L1(x2) =0,
and Ly(x2) = 1, so that p interpolates the data.
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We all know that two distinct points (xy, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x; # xo then we can write the interpolant as a linear polynomial:

@ In point-slope form:
Yo —

pU) —y1 = mx—x) or  p(x) =y + L (x—x)

@ In Lagrange form:

X=X X — Xq
pi) = X1 — Xzy1 - X2 — X4 Y2
= Li(x)y1 + La(X)y2

with L1(x) = 2222 and Lp(x) = X221

X{—Xo? Xo—Xq1 "
Note that L and L, are both polynomials of degree one, so that p
is a linear polynomial, and that L1(xq1) = 1, Lo(x1) =0, L1(x2) =0,
and Ly(x2) = 1, so that p interpolates the data.
Notation: L;(x;) = ¢;, the Kronecker delta symbol.
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Polynomial Interpolation Quadratic Interpolation

The Lagrange form can be applied to three distinct points (x1, y1),

(X2, ¥2), (X3, ¥3) and quadratic interpolation:
The interpolating polynomial is of the form

(X =x2)(x — x3) (x = x1)(X — Xx3) (X = x1)(X — x2)
PR = (x1 = x2)(X1 — X3) (e —x)0e —x3)"2 " (66— x1)(xs — Xz)y3
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Polynomial Interpolation Quadratic Interpolation

The Lagrange form can be applied to three distinct points (x1, y1),

(X2, ¥2), (X3, ¥3) and quadratic interpolation:
The interpolating polynomial is of the form

_ (X = X2)(X — X3) (x = x1)(X — Xx3) (X = x1)(X — x2)
PO) = G meln =)t e x0T D6 = 1) = 1)

Li(x)y1 + La(X)y2 + La(X)ys

Again, L4, L», L3 are quadratic polynomials, and
Li(x;) = 6j, ij=1,2,3,

so that p is the (unique) quadratic interpolating polynomial for the
given data.
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Polynomial Interpolation Quadratic Interpolation

The Lagrange form can be applied to three distinct points (x1, y1),

(X2, ¥2), (X3, ¥3) and quadratic interpolation:
The interpolating polynomial is of the form

_ (X = X2)(X — X3) (x = x1)(X — Xx3) (X = x1)(X — x2)
PO) = G meln =)t e x0T D6 = 1) = 1)

Li(x)y1 + La(X)y2 + La(X)ys

Again, L4, L», L3 are quadratic polynomials, and
Li(x;) = 6j, ij=1,2,3,

so that p is the (unique) quadratic interpolating polynomial for the
given data.

The polynomials Li, L, and Lz are known as the Lagrange basis for
quadratic polynomial interpolation.
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Polynomial Interpolation Quadratic Interpolation

Example
Consider the data
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Polynomial Interpolation Quadratic Interpolation

Example

x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,
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Polynomial Interpolation Quadratic Interpolation

Example

x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,

where

(X = %) (X — X3)

Lo = (1 = x)(x1 — x3)
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Polynomial Interpolation Quadratic Interpolation

Example
Consider the data

X

2

2.5

4

y

0.5

0.4

0.25

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,

where

Li(x) =

(x—x)(x—x3) (x—25)(x—4)
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Polynomial Interpolation Quadratic Interpolation

Example

x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,

where
_ (x=x)x—x) _ (x=25)(x—4) _
Li(x) = (x1 — x2) (x4 —;3) - (2-25)(2-4) =X
(x —x1)(x — x3)
L2(X) (X2 _ Xl)(Xz - ;3)
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x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,

where
o x=x)(x—x3)  (x—25)(x—4) 13
S0 e el —;) T (2-25)(2-4 =X = Fx+10
xX=—x)x-x) @ (x-2)(x—-4) _ 4,
Le(x) O —)(1)()(2 —;3) ~@5-2)25-4) 3~ T&-
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x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

pP(x) = Li(x)y1 + La(x)y2 + Lz(x)ys,

where
0 = o EB  er
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Polynomial Interpolation Quadratic Interpolation
Example

x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

p(x) = Li(x)y1 + La(X)y2 + La(X)ys,
where
b0 = R w) ~ GozmEg 2
L) = e~ e B et
S ST R R R
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Polynomial Interpolation Quadratic Interpolation
Example

x| 2 (25| 4

Consider the data y 05[] 04025

The quadratic interpolating polynomial is of the form

p(x) = Li(x)y1 + La(x)y2 + La(x)y3, )
where
R = = R O
i - S B e
) = el o629 x5, 8

Plugging these back into (1) together with the given y-values we get

p) = (¥—¥x+10)05+ (-4 +8x— )04+ (£ - Ix+5)025

= 0.05x%> —0.425x +1.15



http://math.iit.edu/~fass

Polynomial Interpolation Quadratic Interpolation
Example

Note that we also could have set up a system of linear equations to
find the coefficients a, b, ¢ of a general quadratic polynomial

p(x) = ax® + bx + ¢
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Polynomial Interpolation Quadratic Interpolation
Example

Note that we also could have set up a system of linear equations to
find the coefficients a, b, ¢ of a general quadratic polynomial

p(x) = ax® + bx +c 2)

by plugging the three given pairs of x and y-values into (2). This yields
05 = a(2?+b2)+c
04 = a(25)2+b(25)+c
025 = a(4)?+b(4)+c

fasshauer@iit.edu MATH 350 — Chapter 3 11



http://math.iit.edu/~fass

Polynomial Interpolation Quadratic Interpolation

Example

Note that we also could have set up a system of linear equations to
find the coefficients a, b, ¢ of a general quadratic polynomial

p(x) = ax® + bx +c 2)

by plugging the three given pairs of x and y-values into (2). This yields
05 = a(2?+b2)+c
04 = a(25)2+b(25)+c
025 = a(4)?+b(4)+c

or, in matrix form, Ac = y with
4 2 1 a 0.5
A=|1625 25 1|, e=|b |, y=| 04
16 4 1 c 0.25
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Polynomial Interpolation Quadratic Interpolation

Example

Note that we also could have set up a system of linear equations to
find the coefficients a, b, ¢ of a general quadratic polynomial

p(x) = ax® + bx +c 2)

by plugging the three given pairs of x and y-values into (2). This yields
05 = a(2?+b2)+c
04 = a(25)2+b(25)+c
025 = a(4)?+b(4)+c

or, in matrix form, Ac = y with

4 2 A a 0.5
A=|625 25 1|, e=|b|, y=| 04
16 4 1 c 0.25

The matrix A is known as a Vandermonde matrix, and the basis
{x2, x,1} is referred to as the monomial basis.
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Polynomial Interpolation General Polynomial Interpolation

Theorem

Assume data (x1, y1), - .-, (Xn, yn) with distinct x-values are given.
Then there exists a unique polynomial

p(x) = 3 LX)y
k=1

of degree at most n — 1 with Lagrange basis polynomials

n

X — X
L) = ] " _)’(‘, k=1,...,n
j=t ik KT

such that p interpolates the data, i.e.,

p(X;) = Vs j=1,...,n.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and g are both interpolating
polynomials of degree n — 1.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and g are both interpolating

polynomials of degree n — 1.
Then their difference r = p — q is also a polynomial of degree n — 1.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and g are both interpolating
polynomials of degree n — 1.

Then their difference r = p — q is also a polynomial of degree n — 1.

By the fundamental theorem of algebra r has n — 1 roots.

On the other hand (since p and q interpolate the data),
r(x) =p(x)—q(x)=yj—y;=0, j=1,....n,

so that r has nroots.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and g are both interpolating
polynomials of degree n — 1.

Then their difference r = p — q is also a polynomial of degree n — 1.
By the fundamental theorem of algebra r has n — 1 roots.

On the other hand (since p and q interpolate the data),
r(x) =p(x)—q(x)=yj—y;=0, j=1,....n,

so that r has nroots.

The only way to reconcile this apparent contradiction is if r = 0.
However, this means that p = g, i.e., the interpolating polynomial is
unique.
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Polynomial Interpolation General Polynomial Interpolation

The Vandermonde approach works for arbitrary degree interpolation
problems. If data (x1, y1), ..., (Xn, ¥n) are given, then the Vandermonde
matrix is

XU oxPE L X

xJ=1 xp2 Xo 1
A =

X7 X2 Xy 1
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Polynomial Interpolation General Polynomial Interpolation

The Vandermonde approach works for arbitrary degree interpolation
problems. If data (x1, y1), ..., (Xn, ¥n) are given, then the Vandermonde
matrix is

XU oxPE L X

xJ=1 xp2 Xo 1
A= _

xI—1 xn—2 Xp 1

In MATLAB we can generate a Vandermonde matrix with the command
vander (x), where the vector X = [x1,..., X,]" contains the data sites.
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Polynomial Interpolation General Polynomial Interpolation

The Vandermonde approach works for arbitrary degree interpolation
problems. If data (x1, y1), ..., (Xn, ¥n) are given, then the Vandermonde
matrix is

XU oxPE L X

xJ=1 xp2 Xo 1
A= . .

xI—1 xn—2 Xp 1

In MATLAB we can generate a Vandermonde matrix with the command
vander (x), where the vector X = [x1,..., X,]" contains the data sites.

Note that it is not recommended to work with the Vandermonde matrix
(and determine polynomial interpolants via the associated linear
system) since the Vandermonde matrix is the prototype of an
ill-conditioned matrix.
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Polynomial Interpolation General Polynomial Interpolation

Polynomial Interpolation in MATLAB

The following function uses the Lagrange form to evaluate the
polynomial interpolant of the data (x1, y1), ..., (Xn, ¥n) provided in the
vectors x and y at the points uy, ..., uy provided in u.

fasshauer@iit.edu MATH 350 — Chapter 3
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General Polynomial Interpolation
Polynomial Interpolation in MATLAB

The following function uses the Lagrange form to evaluate the
polynomial interpolant of the data (x1, y1), ..., (Xn, ¥n) provided in the
vectors x and y at the points uy, ..., uy provided in u.

function v = polyinterp (x,y,u)
n = length (x);
v zeros (size (u));
for k = 1:n
w = ones (size(u));
for 3 = [1l:k-1 k+1l:n]
w = (u-x(3))./(x(k)-x(3)) .*w; % compute L_k (u)
end

v = v + wxy(k);
end
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General Polynomial Interpolation
Polynomial Interpolation in MATLAB

The following function uses the Lagrange form to evaluate the
polynomial interpolant of the data (x1, 1), ..., (Xn, ¥n) provided in the
vectors x and y at the points uy, ..., uy provided in u.

function v = polyinterp (x,y,u)
n = length (x);
v zeros (size (u));
for k = 1:n
w = ones (size(u));
for 3 = [1l:k-1 k+1l:n]
w = (u-x(3))./(x(k)-x(3)) .*w; % compute L_k (u)
end
v = v + wxy(k);
end

Note that while the sum and product of the Lagrange formula are
performed with for-loops, the evaluation at the points in u is done in
parallel.
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General Polynomial Interpolation
Polynomial Interpolation in MATLAB

The following function uses the Lagrange form to evaluate the
polynomial interpolant of the data (x1, 1), ..., (Xn, ¥n) provided in the
vectors x and y at the points uy, ..., uy provided in u.

function v = polyinterp(x,y,u)

n = length (x);

v zeros (size (u));
for k = 1:n

w = ones (size(u));
for 3 = [1l:k-1 k+1l:n]
w = (u-x(3))./(x(k)-x(3)) .*w; % compute L_k (u)
end
v = v + wxy(k);
end

Note that while the sum and product of the Lagrange formula are
performed with for-loops, the evaluation at the points in u is done in
parallel.

Run PolyinterpDemo.m to evaluate our earlier quadratic polynomi
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Outline

e Piecewise Polynomial Interpolation
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Piecewise Polynomial Interpolation

Problem

When we interpolated the output data from the skydive problem we
saw that polynomial interpolation in general does not work for many
data points, i.e., with high degree polynomials?.

Polynomials are too smooth and therefore give rise to undesired
oscillations. )
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Piecewise Polynomial Interpolation

Problem

When we interpolated the output data from the skydive problem we
saw that polynomial interpolation in general does not work for many
data points, i.e., with high degree polynomials?.

Polynomials are too smooth and therefore give rise to undesired
oscillations. )

2Things are different if we can optimally choose the
data sites.
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Problem

When we interpolated the output data from the skydive problem we
saw that polynomial interpolation in general does not work for many
data points, i.e., with high degree polynomials?.

Polynomials are too smooth and therefore give rise to undesired
oscillations.

Solution
Reduce the smoothness of the interpolant, i.e., use piecewise
polynomials.

2Things are different if we can optimally choose the
data sites.
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Problem

When we interpolated the output data from the skydive problem we
saw that polynomial interpolation in general does not work for many
data points, i.e., with high degree polynomials?.

Polynomials are too smooth and therefore give rise to undesired
oscillations.

Solution

Reduce the smoothness of the interpolant, i.e., use piecewise
polynomials.

Simplest variant:  “connect-the-dots”, i.e.,
piecewise linear interpolation.

Note: this is how MATLAB creates continuous
graphs.

2Things are different if we can optimally choose the

data sites. ¢
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A piecewise function is defined interval-by-interval. For example,

2-5x, 0<x<1 ‘
—5+2x, 1<x<3 |
—F+3x, 3<x<5
—8+2x, 5<x<6 3

Ux) =
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A piecewise function is defined interval-by-interval. For example,

2-5x, 0<x<1 ‘
-5+2x, 1<x<3 |
—3+ix, 3<x<5 D
—8+2x, 5<x<6

Ux) =

2

g H g

In order to be able to evaluate piecewise polynomials and splines
efficiently we need to know which piece of the interpolant our
evaluation point x lies in.
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

A piecewise function is defined interval-by-interval. For example,

2 — 5x, 0<x<1 ‘
—-5+2x, 1<x<3 |
—3+ix, 3<x<5 D
-8+2x, 5<x<6 e
In order to be able to evaluate piecewise polynomials and splines
efficiently we need to know which piece of the interpolant our

evaluation point x lies in.
We need to find the index k such that xx < x < xx.1 since

Ux) =

2

g 3 g

l1(x), X1 < X< Xo
la(x),  Xo <X < X3
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

A piecewise function is defined interval-by-interval. For example,

2 — 5x, 0<x<1
—5+2x, 1<x<3
Ux) = 1, 1
—5+35X, 3<x<95 :
—8 +2x, 5<x<6 )
In order to be able to evaluate piecewise polynomlals and spllnes
efficiently we need to know which piece of the interpolant our

evaluation point x lies in.
We need to find the index k such that xx < x < xx.1 since

(x), X3 <x<x

lo(X), Xo < X < X
() = 2(X) 2 3

lho1(X), Xp—1 <X < Xp

For example, if we want to find /(4) above, then we have to evaluate ’
the piece /5 between x3 = 3 and x; = 5. "

fasshauer@iit.edu MATH 350 — Chapter 3 18



http://math.iit.edu/~fass

Piecewise Polynomial Interpolation Piecewise Linear Interpolation

Since a linear function connecting (x1, y1) and (xz, y») can be written
as

y=y1+4(x—x)
with slope 9,
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

Since a linear function connecting (x1, y1) and (xz, y») can be written
as
y=y1+4(x—x)

with slope §, the k-th piece of the piecewise linear interpolant is given
by
Yk+1 — Yk (x —

Xk ).
Xk+1 — Xk )

lk(X) = Yk +
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

Since a linear function connecting (x1, y1) and (xz, y») can be written
as
y=y1+4(x—x)

with slope §, the k-th piece of the piecewise linear interpolant is given
by
Yk+1 — Yk (x —

Xk ).
Xk+1 — Xk )

lk(X) = Yk +

The points xx are sometimes called breakpoints or knots.
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Piecewise Linear Interpolation
MATLAB code piecelin.m from [NCM]

The following function evaluates the piecewise linear interpolant to the

data provided in the vectors x and y at all of the points in u.

function v = piecelin (x,y,u)

[

delta = diff(y)./diff(x);

o\

n = length(x);

k = ones(size(u));
for j = 2:n-1
k(x(j) <=u) = 3J;
end
% Evaluate interpolant at all points in u
s =u - x(k);

v = y(k) + s.xdelta(k);

fasshauer@iit.edu MATH 350 — Chapter 3
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Find subinterval indices k s.t. x(k) <= u < x(k+1)
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

MATLAB code piecelin.m from [NCM]

The following function evaluates the piecewise linear interpolant to the
data provided in the vectors x and y at all of the points in u.
function v = piecelin (x,y,u)
% Compute all the slopes as first divided difference
delta = diff(y)./diff (x);
Find subinterval indices k s.t. x(k) <= u < x(k+1)
n = length(x);
k = ones(size(u));
for j = 2:n-1
k(x(j) <=u) = 3J;
end

o\

o\

Evaluate interpolant at all points in u
s =u - x(k);
v = y(k) + s.xdelta(k);
Note that in the statement k (x () <= u) = 7; all entries of k whoge:
corresponding entries of u are > x; are set to j (see PiecelinDemo.m)t
MATH 350 — Chapter 3 20
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.

Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.

Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.

If these derivative values are given, then we can directly use them. The
resulting method is known as piecewise cubic Hermite interpolation.
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Piecewise Cubic Hermite Interpolation
If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.
Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.
If these derivative values are given, then we can directly use them. The
resulting method is known as piecewise cubic Hermite interpolation.
If we don’t have this additional data, we can somehow approximate it:
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.

Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.

If these derivative values are given, then we can directly use them. The
resulting method is known as piecewise cubic Hermite interpolation.

If we don’t have this additional data, we can somehow approximate it:

@ The piecewise cubic interpolant, pchip, used in MATLAB
generates the additional derivative data so that the resulting
interpolant is continuously differentiable and shape preserving,
i.e., the interpolant does not have any oscillations, over- or
undershoots that are not present in the data.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.

Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.

If these derivative values are given, then we can directly use them. The
resulting method is known as piecewise cubic Hermite interpolation.

If we don’t have this additional data, we can somehow approximate it:

@ The piecewise cubic interpolant, pchip, used in MATLAB
generates the additional derivative data so that the resulting
interpolant is continuously differentiable and shape preserving,
i.e., the interpolant does not have any oscillations, over- or
undershoots that are not present in the data.

@ For the cubic spline the derivatives are determined so that the
pieces are twice continuously differentiable at the breakpoints.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant
Assume we now are given function and derivative values, i.e.,

(ka.yka dk) and (Xk+17J/k+1 ) dk+1 )
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant

Assume we now are given function and derivative values, i.e.,
(Xk7 }/k; dk) and (Xk+1 ) ,Vk+1 ) dk+1 )

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs® — 2s° h* — 3hs? + 2s° s?(s—h) s(s — h)?
B Ykt e Ve + Ohet1 +

= +1 = dk
where s = x — xx and h = Xx11 — Xg:

p(x) =

fasshauer@iit.edu MATH 350 — Chapter 3
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant

Assume we now are given function and derivative values, i.e.,
(Xk7 }/k; dk) and (Xk+1 ) ,Vk+1 ) dk+1 )

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs? — 2s° h® — 3hs? + 25° s’(s—h s(s— h)?
py= P2y, oA, T g, 4 )

where s = x — xx and h = Xx11 — Xg:

dk

@ For p(xx) we note that s = 0, and so p(xx) = k-
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant

Assume we now are given function and derivative values, i.e.,
(Xk7 }/k; dk) and (Xk+1 ) ,Vk+1 ) dk+1 )

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs? — 2s° h® — 3hs? + 25° s’(s—h s(s— h)?
py= P2y, oA, T g, 4 )

where s = x — xx and h = Xx11 — Xg:

dk

@ For p(xx) we note that s = 0, and so p(xx) = k-
@ For p(xx.1) we have s = hand p(Xk1) = Yki1-
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant

Assume we now are given function and derivative values, i.e.,
(Xk7 yk7 dk) and (Xk+1 ) ,Vk+1 ) dk+1 )

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs? — 2s° h® — 3hs® + 25° s’(s—h s(s — h)?
p(x) = B Vet e Ye+ (h2 )dk+1 4 ( = ) o)
where s = x — xx and h = Xx11 — Xg:

@ For p(xx) we note that s = 0, and so p(xx) = k-

@ For p(xx+1) we have s = hand p(Xk+1) = Yk+1-

@ For the other two conditions we need

, 6hs — 652 6hs — 6s° 3s® — 2sh s—h)(38s—h
p (X) = h3 Yk+1 - h3 yk + h2 dk+1 + ( ),52 )dk
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant
Assume we now are given function and derivative values, i.e.,
(X, Yk, dk) and (X1, Y41, Akr1)-

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs? — 2s° h® — 3hs® + 25° s’(s—h s(s — h)?
p(x) = B Vet e Ye+ (h2 )dk+1 4 ( = ) o)
where s = x — xx and h = Xx11 — Xg:
@ For p(xx) we note that s = 0, and so p(xx) = k-
@ For p(xx+1) we have s = hand p(Xk+1) = Yk+1-
@ For the other two conditions we need
, 6hs — 652 6hs — 6s° 3s® — 2sh s—h)(38s—h
p (X) = h3 Yk+1 - h3 yk + h2 dk+1 + ( ),52 )dk

and see that
o p'(xx) = dx (since s = 0),
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant
Assume we now are given function and derivative values, i.e.,
(X, Yk, dk) and (X1, Y41, Akr1)-

We can verify (or construct by solving a 4 x 4 linear system) that the
cubic polynomial interpolating this set of data is

3hs? — 2s° h® — 3hs® + 25° s’(s—h s(s — h)?
p(x) = B Vet e Ye+ (h2 )dk+1 4 ( = ) o)
where s = x — xx and h = Xx11 — Xg:
@ For p(xx) we note that s = 0, and so p(xx) = k-
@ For p(xx+1) we have s = hand p(Xk+1) = Yk+1-
@ For the other two conditions we need
, 6hs — 652 6hs — 6s° 3s® — 2sh s—h)(38s—h
p (X) = h3 Yk+1 - h3 yk + h2 dk+1 + ( ),52 )dk

and see that
o p'(xx) = dx (since s = 0),
@ and p'(Xks1) = dki1 (since s = h).
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dx?
The idea is to avoid over- and undershoots at each x.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dx?
The idea is to avoid over- and undershoots at each x.

o If the slopes dx_1 = 2= iﬁ L and &y = y"*‘ “ to the left and right of

X have opposite S|gns then we set dk = O
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dx?
The idea is to avoid over- and undershoots at each x.

o If the slopes dx_1 = 2= ﬁ L and &y = y"*‘ “ to the left and right of

X, have opposite S|gns then we set dk = O

@ If the slopes dx_1 and d, have the same sign and the
corresponding intervals are of the same length, then we set the
slope dj as the harmonic mean:
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes di?
The idea is to avoid over- and undershoots at each x.

o If the slopes dx_1 = 2= ﬁ L and &y = y"*‘ yk to the left and right of
X, have opposite S|gns then we set dk = O

@ If the slopes dx_1 and d, have the same sign and the
corresponding intervals are of the same length, then we set the

slope dj as the harmonic mean:

@ If the slopes dx_1 and &, have the same sign, but the
corresponding intervals are of different length, then we set the
slope dk as a weighted harmonic mean:

Wy + Wo

dkzi
5k1+

where wy = 2hi + hx_1, Wo = hx + 2hk_1, and hx = X1 — Xk
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Piecewise Cubic Hermite Interpolation
How does pchip set the slopes dk? (cont.)

@ The slopes at the endpoints are set by slightly different rules.
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Piecewise Cubic Hermite Interpolation
How does pchip set the slopes dx? (cont.)

@ The slopes at the endpoints are set by slightly different rules.

Run PchipDemo.m to see an example of the shape-preserving
C'-cubic Hermite interpolant, and view pchiptx.m from [NCM] for
more details (for example, how the slopes at the endpoints are
determined).
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

Remark

While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means thatpchip generates a C'-continuous
interpolant.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

Remark

While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means thatpchip generates a C'-continuous
interpolant.

In order to get a piecewise cubic interpolant that is C?-continuous at
the breakpoints we need to consider splines.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

Remark

While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means thatpchip generates a C'-continuous
interpolant.

In order to get a piecewise cubic interpolant that is C?-continuous at
the breakpoints we need to consider splines.

One reason for wanting a C? interpolant is
that light reflections appear with a smooth-
ness of one order lower than the reflecting
surface, i.e., a C' surface will generate non-
smooth light reflections. Car manufacturers
and owners don't like this!
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Remark

While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means thatpchip generates a C'-continuous
interpolant.

In order to get a piecewise cubic interpolant that is C?-continuous at
the breakpoints we need to consider splines.

One reason for wanting a C? interpolant is’
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

Remark

While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means thatpchip generates a C'-continuous
interpolant.

In order to get a piecewise cubic interpolant that is C?-continuous at
the breakpoints we need to consider splines.

One reason for wanting a C? interpolant is
that light reflections appear with a smooth-
ness of one order lower than the reflecting
surface, i.e., a C' surface will generate non-
smooth light reflections. Car manufacturers
and owners don't like this!
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Outline

e Spline Interpolation
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Spline Interpolation

History of Splines

Mathematical splines originated in the CAD software developed by the
aircraft and automobile design industry in the late 1950s and early

1960s and were named after a special wooden or metal drafting tool
used in the manual design of ship hulls:
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History of Splines

Mathematical splines originated in the CAD software developed by the
aircraft and automobile design industry in the late 1950s and early

1960s and were named after a special wooden or metal drafting tool
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General Splines

Splines are special piecewise polynomials whose order of smoothness
at the breakpoints is always one less than the polynomial degree.
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General Splines

Splines are special piecewise polynomials whose order of smoothness
at the breakpoints is always one less than the polynomial degree.

Example

@ If the pieces are generated by linear func-
tions, then the smoothness is zero, i.e., the
pieces join continuously, but the derivatives
are in general not continuous. This is the
same as the piecewise linear interpolant dis-
cussed earlier.
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General Splines

Splines are special piecewise polynomials whose order of smoothness

at the breakpoints is always one less than the polynomial degree.

Example

@ If the pieces are generated by linear func-
tions, then the smoothness is zero, i.e., the
pieces join continuously, but the derivatives
are in general not continuous. This is the
same as the piecewise linear interpolant dis-
cussed earlier.

Cubic splines are required to join with C?
smoothness (i.e., continuously differentiable
first derivative) at the knots. This is more spe-
cific than general piecewise cubics.
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General Splines

Splines are special piecewise polynomials whose order of smoothness
at the breakpoints is always one less than the polynomial degree.

Example

@ If the pieces are generated by linear func-
tions, then the smoothness is zero, i.e., the
pieces join continuously, but the derivatives
are in general not continuous. This is the
same as the piecewise linear interpolant dis- . .
cussed earlier. ‘

Cubic splines are required to join with C?
smoothness (i.e., continuously differentiable
first derivative) at the knots. This is more spe-
cific than general piecewise cubics. L

@ In general, a spline of degree k will have CX~' smoothness at the
breakpoints.
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are
the cubic splines.
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are

the cubic splines. .
We can start exactly as with the pchip interpolant, i.e.,
s? — 2s° H® — 3hs® 4 2° s?(s—h s(s — h)?

h3 Yk+1 ol h3 Yk < (h2 )dk+1 =+ ( h2 )
where s = x — Xx, h = Xx1 — Xk, and dx and di,.1 are slopes at xx and
Xk+1 (to be determined by the spline method).

h.
p(x) = 2 dk
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are

the cubic splines.

We can start exactly as with the pchip interpolant, i.e.,
2723 h373h2+23 2 —h 7h2

Sh3 S}/k+1+ :3 S}/k—ﬁ-s(shz )dk+1+s(sh2 )
where s = x — Xk, h = Xx1 — Xk, and dix and di,.1 are slopes at xx and

Xk+1 (to be determined by the spline method). Moreover (as before),

h.
p(x) = 2 dk

, 6hs — 652 6hs — 652 3s? — 2sh s—h)(8s—h
p'(x) = Tyk-m — 7 Yk + 2 Oks1 + ( )’52 )dk
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are

the cubic splines.
We can start exactly as with the pchip interpolant, i.e.,

—2s° H® — 3hs® 4 2° s?(s—h s(s — h)?
p(x )— e i [ Y+ (h2 )dk+1+ ( 7 )dk

where s = x — Xk, h = Xx1 — Xk, and dix and di,.1 are slopes at xx and
Xk+1 (to be determined by the spline method). Moreover (as before),

6hs — 652 6hs — 652 3s? — 2sh s—h)(8s—h
p( ) Tyk-ﬂ - h3 Yk + h2 dk+1 + ( )’52 )dk

and now also

6h—12s 6h—12s 6s — 2h 6s —4h
pi(x) = Ykt = Ykt — G + =k
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are

the cubic splines.
We can start exactly as with the pchip interpolant, i.e.,

—2s° h® — 3hs® + 25° s’(s—h s(s — h)?
p(x )— o Vet [ Y+ (h2 )dk+1+ ( 7 )dk

where s = x — Xk, h = Xx1 — Xk, and dix and di,.1 are slopes at xx and
Xk+1 (to be determined by the spline method). Moreover (as before),

6hs — 652 6hs — 652 3s? — 2sh s—h)(8s—h
p( ) Tyk-H - h3 yk + h2 dk+1 + ( )f(lz )dk
and now also
6h—12s 6h—12s 6s — 2h 6s — 4h
p//(X) = e Yk1 — S Yk + 2 dk+1 7 dk
(6h — 12S)5k + (68 = 2h)dk+1 + (63 — 4h)dk
h? ’

where ¢y = etk — i’;i =L
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
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What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to
@ join together continuously,
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to
@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.
@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints automatically covered by interpolation v
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints automatically covered by interpolation v
@ Continuous derivative
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints automatically covered by interpolation v
@ Continuous derivative also covered by construction
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints automatically covered by interpolation v
@ Continuous derivative also covered by construction

@ Continuous second derivative
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

@ We need to have cubic pieces between the breakpoints/knots.
@ At the knots we need to

@ join together continuously,
@ join with a continuous derivative,
@ join with a continuous second derivative.

@ Each piece needs to interpolate the corresponding data, i.e.,
p(X,') =y, i=kKkk+1.

How far are we on this list?
@ Cubic pieces Vv
@ Continuous joints automatically covered by interpolation v
@ Continuous derivative also covered by construction

@ Continuous second derivative — still to be done
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—_1, defined on [xx_1, Xk], and py, defined on [xk, Xk 1]-

1
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]

From above, we know ., 1, . (5e— 2h)de + (65— 4h)dhs

pi-1(x) = 2 ’
w (6h — 125)dk + (65 — 2h)dk+1 + (65 — 4h)dk
Pk (X) = h? )
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]

From above, we know ., 1, . (5e— 2h)de + (65— 4h)dhs

pi-1(x) = 2 ’
w (6h — 125)dk + (65 — 2h)dk+1 + (65 — 4h)dk
Pk (X) = h? )

We now need to evaluate at x = x.
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]

From above, we know ., 1, . (5e— 2h)de + (65— 4h)dhs

pi-1(x) = 2 ’
w (6h — 125)dk + (65 — 2h)dk+1 + (65 — 4h)dk
Pk (X) = h? )

We now need to evaluate at x = x.
@ P — S=X—Xklx=x, =0
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]

From above, we know ., 1, . (5e— 2h)de + (65— 4h)dhs

pi-1(x) = 2 ’
w (6h — 125)dk + (65 — 2h)dk+1 + (65 — 4h)dk
Pk (X) = h? )

We now need to evaluate at x = x.
@ P — S=X—Xklx=x, =0
@ Py 41— S=X— Xk—tlx=x = Xk — Xk—1 = Nk_1
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]
From above, we know

, UON6h — 125)0_1 + (65 — 2h)dk + (65 — 4h)dk_1
Pr—1 (X) - h2 ’
) (6h — 128)3x + (65 — 2h)dis1 + (65 — 4h)dk
Pk (X) h2 ’

We now need to evaluate at x = x.

@ P — S=X—Xklx=x, =0

@ Py_qt — S=X— Xk_tlx=x, = Xk — Xk—1 = k1
Therefore’,

" 7 (Bhk—1 —12hk_1)0k—1 + (Bhk—1 — 2hk_1)dk + (6hk—1 — 4hk_1)dk_+
Pi—1(X) =

=

"now being more careful with notation and adding subscripts to h (which technically
should’ve been there earlier, but were omitted to prevent notational clutter)
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]
From above, we know

, UON6h — 125)0_1 + (65 — 2h)dk + (65 — 4h)dk_1
Pr—1 (X) - h2 ’
) (6h — 128)3x + (65 — 2h)dis1 + (65 — 4h)dk
Pk (X) h2 ’

We now need to evaluate at x = x.

@ P — S=X—Xklx=x, =0

@ Py_qt — S=X— Xk_tlx=x, = Xk — Xk—1 = k1
Therefore’,

" 7 (Bhk—1 —12hk_1)0k—1 + (Bhk—1 — 2hk_1)dk + (6hk—1 — 4hk_1)dk_+
Pi—1(X) =

=

—60k—1 + 40k + 20—+
hk_1 ’

"now being more careful with notation and adding subscripts to h (which technically
should’ve been there earlier, but were omitted to prevent notational clutter)
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”
We need to consider two different cubic polynomial pieces:

Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]
From above, we know

, UON6h — 125)0_1 + (65 — 2h)dk + (65 — 4h)dk_1
Pr—1 (X) - h2 ’
) (6h — 128)3x + (65 — 2h)dis1 + (65 — 4h)dk
Pk (X) h2 ’

We now need to evaluate at x = x.
@ P — S=X—Xklx=x, =0
@ Py 41— S=X— Xk—tlx=x = Xk — Xk—1 = Nk_1

Therefore',
(6hk—1 — 12 _1)0k 1 4 (6hk—1 — 2hx_1)dk + (6hk—1 — 4hx_1) 01

Pr—1(xk) =
b
_ 6%+ 4dk + 20k—1
hi—1 ’
olx) = 6hkox — QhK/gkﬂ — 4hydx
k

"now being more careful with notation and adding subscripts to h (which technically
should’ve been there earlier, but were omitted to prevent notational clutter)
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p”

We need to consider two different cubic polynomial pieces:
Pk—1, defined on [xx_1, Xk|, and pk, defined on [xk, Xk 1]

From above, we know

, UON6h — 125)0_1 + (65 — 2h)dk + (65 — 4h)dk_1
Pr—1 (X) - h2 ’
) (6h — 128)3x + (65 — 2h)dis1 + (65 — 4h)dk
Pk (X) h2 ’

We now need to evaluate at x = x.
@ P — S=X—Xklx=x, =0
@ Py 41— S=X— Xk—tlx=x = Xk — Xk—1 = Nk_1

Therefore',
(6hk—1 — 12 _1)0k 1 4 (6hk—1 — 2hx_1)dk + (6hk—1 — 4hx_1) 01

Pk -1 (xx) =
b
_ 6%+ 4dk + 20k—1
hk_1 ’
w 6hkokx — 2hk k1 — 4hkdk 60k — 2dk1 — 4dk
Pr(Xc) = 2 = H .
Kk k

"now being more careful with notation and adding subscripts to h (which technically
should’ve been there earlier, but were omitted to prevent notational clutter)
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How to get continuity of p” (cont.)

To get continuity we now need to ensure p)_,(xx) = py(Xk), i.e.,

—60k_1 + 40k + 2dk_+4 _ 6k — 21 — 40k
hy—1 hy '
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How to get continuity of p” (cont.)

To get continuity we now need to ensure p)_,(xx) = py(Xk), i.e.,

—60k_1 + 40k + 2dk_+4 B 6k — 21 — 40k
h—1 hy '

Since the hx and 6k are differences of the given data values (and
therefore known quantities) we isolate them to the right-hand side and
get

4dy + 2dk_1 n 2011 + 4dg B 60k_1 n %
Rk_1 hy hk—1 hy
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How to get continuity of p” (cont.)

To get continuity we now need to ensure p)_,(xx) = py(Xk), i.e.,

—60k_1 + 40k + 2dk_+4 B 6k — 21 — 40k
h—1 hy '

Since the hx and 6k are differences of the given data values (and
therefore known quantities) we isolate them to the right-hand side and
get

Rk_1 hy hk—1 hy
< (2dk + dk—1)hk + (Akg1 +2dk) k-1 = 30k—_1hk + 3dkhk_1

4dy + 2dk_1 n 2dk+1 + 4dj 60k_1 n 60k
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How to get continuity of p” (cont.)

To get continuity we now need to ensure p)_,(xx) = py(Xk), i.e.,

—60k_1 + 40k + 2dk_+4 B 6k — 21 — 40k
h—1 hy '

Since the hx and 6k are differences of the given data values (and
therefore known quantities) we isolate them to the right-hand side and
get

4dy + 2dk_1 n 2dk+1 + 4dj 60k_1 n 60k

Rk_1 hy hk—1 hy
< (2dk + dk—1)hk + (Akg1 +2dk) k-1 = 30k—_1hk + 3dkhk_1
= hkdk—1 +2(hk—1 + hg)dk + M1k = 3(hk—10k + hkdk—1)-

fasshauer@iit.edu MATH 350 — Chapter 3 32


http://math.iit.edu/~fass

Spline Interpolation Cubic Spline Interpolation

How to get continuity of p” (cont.)

Note that the equation, which we derived for an arbitrary knot x,
hidk—1 + 2(hk—1 + hg)dk + hx—10dk1 = 3(hk—10x + hkdk—_1)

needs to hold for all interior knots xo, x3, ..., Xp_1,
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p” (cont.)
Note that the equation, which we derived for an arbitrary knot x,
hidk—1 4+ 2(hk—1 + hi)dk + hx—10k41 = 3(hk—10k + hkdk_1)

needs to hold for all interior knots x», x3, ..., X,_1, i.€., we have the
(n—2) x nsystem of linear equations Ad = r with tridiagonal

he  2(hy + hy) h
h3 2(h2 -+ h3) h2
A = o o 5
hn71 2(hn72 i hn71) hn72
a
a> hy 62 + h2o4
dS h253 + h3(52
d= . , r=3 _

An—1 hn—28n—1 4+ An_16n—2

dn
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p” (cont.)
Note that the equation, which we derived for an arbitrary knot x,

hidk—1 4+ 2(hk—1 + hi)dk + hx—10k41 = 3(hk—10k + hkdk_1)

needs to hold for all interior knots x», x3, ..., X,_1, i.€., we have the
(n—2) x nsystem of linear equations Ad = r with tridiagonal
ho 2(h1 -+ h2) hy
A hs 2(ho + h3)  he

hn71 2(hn72 i hn71) hn72

a
ab> hy62 + ho04
ds h2d3 4 h3d2
d= ) , r=3 )
dn71 hn—26n—1 + hn—16n—2
dn

Problem: We don’t have enough conditions to determine all of the
unknown slope values d, ..., dy!
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End Conditions

There are many different types of cubic splines. They differ by which
two equations we add to the linear system Ad = r to determine the
slopes at the endpoints x; and xj.
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End Conditions

There are many different types of cubic splines. They differ by which
two equations we add to the linear system Ad = r to determine the
slopes at the endpoints x; and x,.

For example,

@ cubic natural splines: use zero second derivative at ends,

@ cubic not-a-knot splines: use a single cubic on first two and last
two intervals,

@ cubic clamped (or complete) splines: specify first derivative values
at ends,

@ cubic periodic splines: ensure that value of function, first and
second derivative are same at both ends.
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Cubic Natural Splines

We set p”(x) = 0 when x is one of the endpoints, x4 or x.
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines

We set p’(x) = 0 when x is one of the endpoints, x; or x,. Physically,
this has the effect of forcing the interpolating spline to have zero
curvature at the ends, i.e., its behavior is similar to that of a thin rod
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines

We set p’(x) = 0 when x is one of the endpoints, x; or x,. Physically,
this has the effect of forcing the interpolating spline to have zero
curvature at the ends, i.e., its behavior is similar to that of a thin rod

Left end (enforce p{(xq) = 0): From above we know

601 — 20 — 4d

,Oq,(X1 ) h1 )
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines

We set p’(x) = 0 when x is one of the endpoints, x; or x,. Physically,
this has the effect of forcing the interpolating spline to have zero
curvature at the ends, i.e., its behavior is similar to that of a thin rod

Left end (enforce p{(xq) = 0): From above we know

661 — 2d> — 4d
Pix) = =5,
1
so that we have the condition
4d; + 20> = 60. (3)
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Cubic Natural Splines

We set p’(x) = 0 when x is one of the endpoints, x; or x,. Physically,
this has the effect of forcing the interpolating spline to have zero
curvature at the ends, i.e., its behavior is similar to that of a thin rod

Left end (enforce p{(xq) = 0): From above we know

601 — 20 — 4d
- = ,

P (x1)
so that we have the condition
4d; + 2d> = 601. (3)

Right end (enforce p);_,(xn) = 0): From above

—60p_1 +4dy + 2d,—
1/ _ n—1 n n—1
pnf1(Xn) - hnf1 )

so that
2dn_1 + 4dn == 66,‘)_1 5
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic natural spline is obtained by adding equations (3) and (4) to
the generic (n — 2) x ntridiagonal linear system we derived earlier.
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic natural spline is obtained by adding equations (3) and (4) to

the generic (n — 2) x ntridiagonal linear system we derived earlier. Its
components are

2 1
ho 2(h1 -+ h2) hy
hs 2(h2 TP h3) ho
A= . . 5
hn71 2(hn72 + hn71) hn72
1 2
di 01
a- h1d2 + hod4
a3 hod3 + h3d2
d= : : r=3 :
dn71 hn725n71 P hn715n72
dn 6n—1
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Cubic Natural Splines (cont.)

Remark

The cubic natural spline is that interpolating C? function which
minimizes the model for the bending energy of a thin rod. Thus the
name seems justified.
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Cubic Natural Splines (cont.)

Remark

The cubic natural spline is that interpolating C? function which
minimizes the model for the bending energy of a thin rod. Thus the
name seems justified.

The modified version splinetx_natural .m of the [NCM] routine
splinetx.m performs cubic spline interpolation with natural end
conditions.
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Cubic Natural Splines (cont.)

Remark

The cubic natural spline is that interpolating C? function which
minimizes the model for the bending energy of a thin rod. Thus the
name seems justified.

The modified version splinetx_natural .m of the [NCM] routine
splinetx.m performs cubic spline interpolation with natural end
conditions.

See SplineDemo.m for an example.
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Cubic Not-a-Knot Splines

Since the generic linear system is missing two equations (and we may
not have any more data than the function values at the break points),
we condense the representation and use two subintervals near each
end (instead of one) to generate the cubic pieces.
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Cubic Not-a-Knot Splines

Since the generic linear system is missing two equations (and we may
not have any more data than the function values at the break points),
we condense the representation and use two subintervals near each
end (instead of one) to generate the cubic pieces.

Left end: define one cubic piece on x; < x < X3, i.e., xo is not a knot.
Without giving the details? this leads to

(3h1 + 2h2)h251 + h252
hi + ho

()

hody + (h1 + hg)d

2we need to ensure that pi”’(x2) = p5’(X2)
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Cubic Not-a-Knot Splines

Since the generic linear system is missing two equations (and we may
not have any more data than the function values at the break points),
we condense the representation and use two subintervals near each
end (instead of one) to generate the cubic pieces.

Left end: define one cubic piece on x; < x < X3, i.e., xo is not a knot.
Without giving the details? this leads to

(3h1 + 2h2)h251 + h252

hod- hy + hy)db =
ody + (hy + hp) By +

()

Right end: define one cubic piece on x,_» < x < Xp, i.e., X, 1 isnot a
knot. Thus,

h%_15n—2 + (2hp—2 + 3hp_1)hp_20n_1

h,_ h,_ _ hn_ =
( n—1+ Nn Z)dn 1+ Ny 2dn hn—2+hn—1

2we need to ensure that pi”’(x2) = p5’(X2)
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Spline Interpolation Cubic Spline Interpolation

Cubic Not-a-Knot Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic not-a-knot spline is obtained by adding equations (5) and (6)
to the tridiagonal (n — 2) x n linear system we derived earlier.

fasshauer@iit.edu MATH 350 — Chapter 3

39


http://math.iit.edu/~fass

Cubic Not-a-Knot Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic not-a-knot spline is obtained by adding equations (5) and (6)
to the tridiagonal (n — 2) x n linear system we derived earlier. Its
components are

hy  hi+h
ho 2(h1 + hg) hy
hs 2(h2 + h3) ho
A = - . b
hn71 2(hn72 iz hn71) hnfz
hn—1 i hn—2 hn—2
r (3hy+2hp) 61 +h2 55 7
o ik
b 3(hy02 + h2d1)
as 3(h203 + h3dz)
d= . , r= .
dn—1 3(hnf2(5n71 + hn,1§n,2)
dn hgz—16n72+(2hn72+3hn—1)hn—26n—1
L hn—2+hn—1 B
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Splines in MATLAB
[NCM] includes the function splinetx.m that works similarly to

pchiptx.mdiscussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.
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Splines in MATLAB

[NCM] includes the function splinetx.m that works similarly to
pchiptx.mdiscussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.
MATLAB’s built-in sp1ine function allows us to perform cubic clamped
spline interpolation by setting the values of the derivatives of the spline
at the left and right ends in the vector y (which now must contain two
more entries than x).
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Splines in MATLAB

[NCM] includes the function splinetx.m that works similarly to
pchiptx.mdiscussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.

MATLAB’s built-in sp1ine function allows us to perform cubic clamped
spline interpolation by setting the values of the derivatives of the spline
at the left and right ends in the vector y (which now must contain two
more entries than x).

See the script SplineDemo.m for an example of cubic not-a-knot,
natural, and clamped spline interpolation.
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Splines in MATLAB

[NCM] includes the function splinetx.m that works similarly to
pchiptx.mdiscussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.
MATLAB’s built-in sp1ine function allows us to perform cubic clamped
spline interpolation by setting the values of the derivatives of the spline
at the left and right ends in the vector y (which now must contain two
more entries than x).

See the script SplineDemo.m for an example of cubic not-a-knot,
natural, and clamped spline interpolation.

It can be shown that for generic interpolation problems (when we don’t
know much about the behavior near the endpoints) the cubic
not-a-knot spline is the most accurate of the three cubic spline
methods discussed here.
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Splines in MATLAB

[NCM] includes the function splinetx.m that works similarly to
pchiptx.mdiscussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.
MATLAB’s built-in sp1ine function allows us to perform cubic clamped
spline interpolation by setting the values of the derivatives of the spline
at the left and right ends in the vector y (which now must contain two
more entries than x).

See the script SplineDemo.m for an example of cubic not-a-knot,
natural, and clamped spline interpolation.

It can be shown that for generic interpolation problems (when we don’t
know much about the behavior near the endpoints) the cubic
not-a-knot spline is the most accurate of the three cubic spline
methods discussed here.

There is also an entire toolbox for splines written by Carl de Boor, ongi
of the leaders in the field (see also [de Boor]). ‘
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Cubic Spline Interpolation
Related Methods

There are many other related interpolation methods such as
@ B-splines,
@ Bézier splines,
@ splines with non-uniform knots,
@ rational splines,
@ rational splines with non-uniform knots (NURBS)
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Cubic Spline Interpolation
Related Methods

There are many other related interpolation methods such as

@ B-splines,

@ Bézier splines,

@ splines with non-uniform knots,

@ rational splines,

@ rational splines with non-uniform knots (NURBS)
If the curves are more complicated, then we can use all methods in
parametric form. This has applications, e.g., in the design of
typesetting fonts.
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Cubic Spline Interpolation
Related Methods

There are many other related interpolation methods such as

@ B-splines,

@ Bézier splines,

@ splines with non-uniform knots,

@ rational splines,

@ rational splines with non-uniform knots (NURBS)
If the curves are more complicated, then we can use all methods in
parametric form. This has applications, e.g., in the design of
typesetting fonts.
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Outline

e Interpolation in Higher Space Dimensions
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Ui s
What happens in higher dimensions?

Theorem (Mairhuber-Curtis)

If we fix n > 2 basis functions By, . .., B, in two or more space
dimensions, then we may always be able to find n data points
X1,...,Xp Such that the Vandermonde-like interpolation matrix

B1(X1) BQ(X1) Bn(X1)
B1 (Xg) Bg(Xg) ... Bn(Xg)
Bi(Xn) Ba(Xn) ... Ba(xn)

with entries By(X;) is singular.
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What does the Mairhuber-Curtis theorem actually say?

@ The M-C theorem implies that we can’t choose our basis
independent of the data locations, i.e., the basis has to be chosen
after the data sites. It has to be a data-dependent basis.
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What does the Mairhuber-Curtis theorem actually say?

@ The M-C theorem implies that we can’t choose our basis
independent of the data locations, i.e., the basis has to be chosen
after the data sites. It has to be a data-dependent basis.

@ As a consequence we can no longer use (multivariate)
polynomials for arbitrary data in higher dimensions.
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Ui s
What does the Mairhuber-Curtis theorem actually say?

@ The M-C theorem implies that we can’t choose our basis
independent of the data locations, i.e., the basis has to be chosen
after the data sites. It has to be a data-dependent basis.

@ As a consequence we can no longer use (multivariate)
polynomials for arbitrary data in higher dimensions.

@ Radial basis functions present one way to circumvent the problem
presented by the Mairhuber-Curtis theorem.
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Interpolation in Higher Space Dimensions Theoretical Insights

Proof.
Assume that we have a basis {B4s, ..., By} with n > 2 such for arbitrary
data that the interpolation is non-singular, i.e.

det (Bk(Xj)) #0 (7)

for any distinct x4, ..., xp.
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Interpolation in Higher Space Dimensions Theoretical Insights

Proof.
Assume that we have a basis {B4s, ..., By} with n > 2 such for arbitrary
data that the interpolation is non-singular, i.e.

det (Bk(Xj)) #0 (7)

for any distinct x4, ..., xp.
We need to show that this leads to a contradiction.
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Interpolation in Higher Space Dimensions Theoretical Insights

Proof.
Assume that we have a basis {B4s, ..., By} with n > 2 such for arbitrary
data that the interpolation is non-singular, i.e.

det (Bk(Xj)) #0 (7)

for any distinct x4, ..., xp.
We need to show that this leads to a contradiction.
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Interpolation in Higher Space Dimensions Theoretical Insights

Proof.
Assume that we have a basis {B4s, ..., By} with n > 2 such for arbitrary
data that the interpolation is non-singular, i.e.

det (Bk(Xj)) #0 (7)
for any distinct x4, ..., xp.

We need to show that this leads to a contradiction.

Since the determinant is a continuous function of x4 and x> we must
have had det = 0 at some point along the continuous path in our
interpolation domain. This contradicts (7).
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Gasoline Engine Design

Carburetar Injector Injectar

Intake port

Direct Injection
TGD 1)

Fuel Spray

Part Injection
M P

Carburetar

1470 1480 149490 2000
Yeaar
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Interpolation in Higher Space Dimensions A Few More Applications
Gasoline Engine Design

Carburetar Injectar Injectar

Intake port

Direct Injection
TGD 1)

Fuel Spray

Part Injection
M P

Carburetor

Variables: 3870 1980 Tes0 Z000

Yeaar

spark timing
speed

load

air-fuel ratio
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Interpolation in Higher Space Dimensions A Few More Applications
Gasoline Engine Design

Carburetar Injectar Injectar

Intake port

Direct Injection
TGD 1)

Fuel Spray

Part Injection
M P

Carburetor

Variables: 3870 1980 Tes0 Z000

Yeaar

spark timing  exhaust gas re-circulation rate

speed intake valve timing
load exhaust valve timing
air-fuel ratio
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Interpolation in Higher Space Dimensions A Few More Applications
Gasoline Engine Design

Carburetar Injector Injectar

Intake port

Direct Injection
TGD 1)

Fuel Spray

Part Injection
M P

Carburetar

Variables: 3870 1980 Tes0 Z000

Yeaar

spark timing  exhaust gas re-circulation rate  fuel injection timing

speed intake valve timing
load exhaust valve timing
air-fuel ratio
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e
Engine Data Fitting

Find a function (model) that fits the “input” variables and
“output” (fuel consumption), and use the model to decide
which variables lead to an optimal fuel consumption.

input ? output
Xy = spark timing
pu— f i
X2 speed (x4 ’&’E’X“) fuel consumption
x3 = load
X4 = air-fuel ratio
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Fuel Consumption Model
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A Few More Applications
Rapid Prototyping

An important application of interpolation (or very good approximation)
methods is the creation of computer models by scanning physical
objects such as historic artifacts or even household appliance parts,
and then using interpolation to produce a surface or solid model that
can be fed into the manufacturing process.
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A Few More Applications
Rapid Prototyping

An important application of interpolation (or very good approximation)
methods is the creation of computer models by scanning physical
objects such as historic artifacts or even household appliance parts,
and then using interpolation to produce a surface or solid model that
can be fed into the manufacturing process.

Special 3D printers can then be used to quickly and easily generate
“clones” of the original object.
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A Few More Applications
Rapid Prototyping

An important application of interpolation (or very good approximation)
methods is the creation of computer models by scanning physical
objects such as historic artifacts or even household appliance parts,
and then using interpolation to produce a surface or solid model that
can be fed into the manufacturing process.

Special 3D printers can then be used to quickly and easily generate
“clones” of the original object.

See, e.g.,
@ [Prof. Qian’s website] in [IT’s MMAE department,
@ [The Digital Michelangelo Project] at Stanford University,
@ this article [about 3D printers].
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SpeCiaI Movie Effects nttp://www.fastscan3d.com

trollscanning.mpeg

Source is here [FastSCAN]. Also look at this [Lord of the Rings].


trollscanning.mpeg
http://math.iit.edu/~fass

References
References |

¥ C. deBoor.
A Practical Guide to Splines.
Springer, revised edition, 2001.

¥ G. E. Fasshauer.
Meshfree Approximation Methods with MATLAB.
World Scientific Publishers, 2007.

¥ C. Moler.
Numerical Computing with MATLAB.
SIAM, Philadelphia, 2004.
Also http://www.mathworks.com/moler/.

‘ L. L. Schumaker.
Spline Functions: Basic Theory (3rd ed.).
Cambridge University Press, 2007.

"Printers’ that can make 3-D solid objects soon to enter mainstream.
http://www.sciencedaily.com/releases/2007/09/070925081418.htm.

fasshauer@iit.edu MATH 350 — Chapter 3 51



http://www.mathworks.com/moler/
http://www.sciencedaily.com/releases/2007/09/070925081418.htm
http://math.iit.edu/~fass

References
References Il

@ X. Qian.

Computational Design and Manufacturing Lab.
http://mmae.iit.edu/cadcam/research.htm.
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