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Motivation and Applications
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A problem that arises in almost all fields of science and engineering is
to closely fit a given set of data (obtained, e.g., from experiments or
measurements).

Alternatively, we may want to represent a complicated function (that
we know only at a few points) by a simpler one. This could come up in
the evaluation of integrals with complicated integrands, or the solution
of differential equations.
We can fit the data

exactly→ interpolation or curve fitting,
or only approximately (e.g., when the data
is noisy)→ (least squares) approximation
or regression

The data can be
univariate: measurements of physical phenomenon over time
multivariate: measurements of physical phenomenon over a 2D or
3D spatial domain

We will concentrate on interpolation of univariate data.
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Motivation and Applications

Example
Consider the following artificial data

x 3 1 5 6 0
y 1 -3 2 4 2

We can run InterpolationDemo.m (which calls the program
interpgui from [NCM] with this data set) to look at different types of
interpolants.
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Motivation and Applications

Example
Consider the following time and velocity outputs from the Euler solution
of the skydive problem from Computer Assignment 1.

t v t v
0 0 11 23.9383
1 9.8100 12 16.1725
2 18.1795 13 14.1084
3 25.3199 14 13.5598
4 31.4119 15 13.4140
5 36.6093 16 13.3752
6 41.0435 17 13.3649
7 44.8265 18 13.3622
8 48.0541 19 13.3615
9 50.8077 20 13.3613
10 53.1569

We can continue InterpolationDemo.m to see how this set of data
is fitted by different methods.
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Polynomial Interpolation Linear Interpolation

We all know that two distinct points (x1, y1) and (x2, y2) in the plane
uniquely define a line that passes through them.
If x1 6= x2 then we can write the interpolant as a linear polynomial:

In point-slope form:

p(x)− y1 = m(x − x1) or p(x) = y1 +
y2 − y1

x2 − x1
(x − x1).

In Lagrange form:

p(x) =
x − x2

x1 − x2
y1 +

x − x1

x2 − x1
y2

= L1(x)y1 + L2(x)y2

with L1(x) =
x−x2
x1−x2

, and L2(x) =
x−x1
x2−x1

.

Note that L1 and L2 are both polynomials of degree one, so that p
is a linear polynomial, and that L1(x1) = 1, L2(x1) = 0, L1(x2) = 0,
and L2(x2) = 1, so that p interpolates the data.
Notation: Li(xj) = δij , the Kronecker delta symbol.
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Polynomial Interpolation Quadratic Interpolation

The Lagrange form can be applied to three distinct points (x1, y1),
(x2, y2), (x3, y3) and quadratic interpolation:
The interpolating polynomial is of the form

p(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
y1 +

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
y2 +

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
y3

= L1(x)y1 + L2(x)y2 + L3(x)y3

Again, L1,L2,L3 are quadratic polynomials, and

Li(xj) = δij , i , j = 1,2,3,

so that p is the (unique) quadratic interpolating polynomial for the
given data.
The polynomials L1, L2 and L3 are known as the Lagrange basis for
quadratic polynomial interpolation.
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Polynomial Interpolation Quadratic Interpolation

Example

Consider the data
x 2 2.5 4
y 0.5 0.4 0.25

The quadratic interpolating polynomial is of the form

p(x) = L1(x)y1 + L2(x)y2 + L3(x)y3, (1)

where

L1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
=

(x − 2.5)(x − 4)
(2 − 2.5)(2 − 4)

= x2 − 13
2

x + 10

L2(x) =
(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
=

(x − 2)(x − 4)
(2.5 − 2)(2.5 − 4)

= −4
3

x2 + 8x − 32
3

L3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
=

(x − 2)(x − 2.5)
(4 − 2)(4 − 2.5)

=
x2

3
− 3

2
x +

5
3

Plugging these back into (1) together with the given y -values we get

p(x) =
(

x2 − 13
2 x + 10

)
0.5 +

(
− 4

3 x2 + 8x − 32
3

)
0.4 +

(
x2

3 − 3
2 x + 5

3

)
0.25

= 0.05x2 − 0.425x + 1.15
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Polynomial Interpolation Quadratic Interpolation

Example
Note that we also could have set up a system of linear equations to
find the coefficients a, b, c of a general quadratic polynomial

p(x) = ax2 + bx + c (2)

by plugging the three given pairs of x and y -values into (2). This yields
0.5 = a(2)2 + b(2) + c
0.4 = a(2.5)2 + b(2.5) + c

0.25 = a(4)2 + b(4) + c

or, in matrix form, Ac = y with

A =

 4 2 1
6.25 2.5 1
16 4 1

 , c =

 a
b
c

 , y =

 0.5
0.4

0.25


The matrix A is known as a Vandermonde matrix, and the basis
{x2, x ,1} is referred to as the monomial basis.
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Polynomial Interpolation General Polynomial Interpolation

Theorem
Assume data (x1, y1), . . . , (xn, yn) with distinct x-values are given.
Then there exists a unique polynomial

p(x) =
n∑

k=1

Lk (x)yk

of degree at most n − 1 with Lagrange basis polynomials

Lk (x) =
n∏

j=1,j 6=k

x − xj

xk − xj
, k = 1, . . . ,n

such that p interpolates the data, i.e.,

p(xj) = yj , j = 1, . . . ,n.
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Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.
Then their difference r = p − q is also a polynomial of degree n − 1.
By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.

Then their difference r = p − q is also a polynomial of degree n − 1.
By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.
Then their difference r = p − q is also a polynomial of degree n − 1.

By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.
Then their difference r = p − q is also a polynomial of degree n − 1.
By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.
Then their difference r = p − q is also a polynomial of degree n − 1.
By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

Proof.
Existence is established by the Langrange interpolation formula.

To show uniqueness, we assume that p and q are both interpolating
polynomials of degree n − 1.
Then their difference r = p − q is also a polynomial of degree n − 1.
By the fundamental theorem of algebra r has n − 1 roots.

On the other hand (since p and q interpolate the data),

r(xj) = p(xj)− q(xj) = yj − yj = 0, j = 1, . . . ,n,

so that r has n roots.

The only way to reconcile this apparent contradiction is if r ≡ 0.
However, this means that p = q, i.e., the interpolating polynomial is
unique.

fasshauer@iit.edu MATH 350 – Chapter 3 13

http://math.iit.edu/~fass


Polynomial Interpolation General Polynomial Interpolation

The Vandermonde approach works for arbitrary degree interpolation
problems. If data (x1, y1), . . . , (xn, yn) are given, then the Vandermonde
matrix is

A =


xn−1

1 xn−2
1 . . . x1 1

xn−1
2 xn−2

2 x2 1
...

...
...

...
xn−1

n xn−2
n . . . xn 1



In MATLAB we can generate a Vandermonde matrix with the command
vander(x), where the vector x = [x1, . . . , xn]

T contains the data sites.

Note that it is not recommended to work with the Vandermonde matrix
(and determine polynomial interpolants via the associated linear
system) since the Vandermonde matrix is the prototype of an
ill-conditioned matrix.
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Polynomial Interpolation General Polynomial Interpolation

Polynomial Interpolation in MATLAB

The following function uses the Lagrange form to evaluate the
polynomial interpolant of the data (x1, y1), . . . , (xn, yn) provided in the
vectors x and y at the points u1, . . . ,um provided in u.

function v = polyinterp(x,y,u)
n = length(x);
v = zeros(size(u));
for k = 1:n

w = ones(size(u));
for j = [1:k-1 k+1:n]

w = (u-x(j))./(x(k)-x(j)).*w; % compute L_k(u)
end
v = v + w*y(k);

end

Note that while the sum and product of the Lagrange formula are
performed with for-loops, the evaluation at the points in u is done in
parallel.
Run PolyinterpDemo.m to evaluate our earlier quadratic polynomial.
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parallel.

Run PolyinterpDemo.m to evaluate our earlier quadratic polynomial.
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Polynomial Interpolation General Polynomial Interpolation
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Piecewise Polynomial Interpolation

Outline
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Piecewise Polynomial Interpolation

Problem
When we interpolated the output data from the skydive problem we
saw that polynomial interpolation in general does not work for many
data points, i.e., with high degree polynomialsa.
Polynomials are too smooth and therefore give rise to undesired
oscillations.

Solution
Reduce the smoothness of the interpolant, i.e., use piecewise
polynomials.

Simplest variant: “connect-the-dots”, i.e.,
piecewise linear interpolation.
Note: this is how MATLAB creates continuous
graphs.
aThings are different if we can optimally choose the
data sites.
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

A piecewise function is defined interval-by-interval. For example,

`(x) =


2− 5x , 0 ≤ x < 1
−5 + 2x , 1 ≤ x < 3
−1

2 + 1
2x , 3 ≤ x < 5

−8 + 2x , 5 ≤ x ≤ 6

In order to be able to evaluate piecewise polynomials and splines
efficiently we need to know which piece of the interpolant our
evaluation point x lies in.
We need to find the index k such that xk ≤ x < xk+1 since

`(x) =


`1(x), x1 ≤ x < x2

`2(x), x2 ≤ x < x3
... ,

`n−1(x), xn−1 ≤ x ≤ xn

For example, if we want to find `(4) above, then we have to evaluate
the piece `3 between x3 = 3 and x4 = 5.
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

Since a linear function connecting (x1, y1) and (x2, y2) can be written
as

y = y1 + δ(x − x1)

with slope δ,

the k -th piece of the piecewise linear interpolant is given
by

`k (x) = yk +
yk+1 − yk

xk+1 − xk
(x − xk ).

The points xk are sometimes called breakpoints or knots.
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Piecewise Polynomial Interpolation Piecewise Linear Interpolation

MATLAB code piecelin.m from [NCM]
The following function evaluates the piecewise linear interpolant to the
data provided in the vectors x and y at all of the points in u.
function v = piecelin(x,y,u)
% Compute all the slopes as first divided difference

delta = diff(y)./diff(x);
% Find subinterval indices k s.t. x(k) <= u < x(k+1)

n = length(x);
k = ones(size(u));
for j = 2:n-1

k(x(j) <= u) = j;
end

% Evaluate interpolant at all points in u
s = u - x(k);
v = y(k) + s.*delta(k);

Note that in the statement k(x(j) <= u) = j; all entries of k whose
corresponding entries of u are ≥ xj are set to j (see PiecelinDemo.m).
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

If we want something a bit fancier (i.e., smoother), then we can work
with a cubic polynomial piece on each subinterval.

Just as a linear polynomial naturally matches the two function values
given at the endpoints of the subinterval, the four coefficients of the
cubic polynomial can be determined by matching function and
derivative values at the endpoints.
If these derivative values are given, then we can directly use them. The
resulting method is known as piecewise cubic Hermite interpolation.
If we don’t have this additional data, we can somehow approximate it:

The piecewise cubic interpolant, pchip, used in MATLAB

generates the additional derivative data so that the resulting
interpolant is continuously differentiable and shape preserving,
i.e., the interpolant does not have any oscillations, over- or
undershoots that are not present in the data.
For the cubic spline the derivatives are determined so that the
pieces are twice continuously differentiable at the breakpoints.
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

The Cubic Hermite Interpolant
Assume we now are given function and derivative values, i.e.,
(xk , yk ,dk ) and (xk+1, yk+1,dk+1).

We can verify (or construct by solving a 4× 4 linear system) that the
cubic polynomial interpolating this set of data is

p(x) =
3hs2 − 2s3

h3 yk+1 +
h3 − 3hs2 + 2s3

h3 yk +
s2(s − h)

h2 dk+1 +
s(s − h)2

h2 dk

where s = x − xk and h = xk+1 − xk :

For p(xk ) we note that s = 0, and so p(xk ) = yk .
For p(xk+1) we have s = h and p(xk+1) = yk+1.
For the other two conditions we need

p′(x) =
6hs − 6s2

h3 yk+1 −
6hs − 6s2

h3 yk +
3s2 − 2sh

h2 dk+1 +
(s − h)(3s − h)

h2 dk

and see that
p′(xk ) = dk (since s = 0),
and p′(xk+1) = dk+1 (since s = h).
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dk?
The idea is to avoid over- and undershoots at each xk .

If the slopes δk−1 =
yk−yk−1
xk−xk−1

and δk =
yk+1−yk
xk+1−xk

to the left and right of
xk have opposite signs, then we set dk = 0.
If the slopes δk−1 and δk have the same sign and the
corresponding intervals are of the same length, then we set the
slope dk as the harmonic mean:

dk =
2

1
δk−1

+ 1
δk

.

If the slopes δk−1 and δk have the same sign, but the
corresponding intervals are of different length, then we set the
slope dk as a weighted harmonic mean:

dk =
w1 + w2
w1
δk−1

+ w2
δk

,

where w1 = 2hk + hk−1, w2 = hk + 2hk−1, and hk = xk+1 − xk .

fasshauer@iit.edu MATH 350 – Chapter 3 23

http://math.iit.edu/~fass


Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dk?
The idea is to avoid over- and undershoots at each xk .

If the slopes δk−1 =
yk−yk−1
xk−xk−1

and δk =
yk+1−yk
xk+1−xk

to the left and right of
xk have opposite signs, then we set dk = 0.

If the slopes δk−1 and δk have the same sign and the
corresponding intervals are of the same length, then we set the
slope dk as the harmonic mean:

dk =
2

1
δk−1

+ 1
δk

.

If the slopes δk−1 and δk have the same sign, but the
corresponding intervals are of different length, then we set the
slope dk as a weighted harmonic mean:

dk =
w1 + w2
w1
δk−1

+ w2
δk

,

where w1 = 2hk + hk−1, w2 = hk + 2hk−1, and hk = xk+1 − xk .

fasshauer@iit.edu MATH 350 – Chapter 3 23

http://math.iit.edu/~fass


Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dk?
The idea is to avoid over- and undershoots at each xk .

If the slopes δk−1 =
yk−yk−1
xk−xk−1

and δk =
yk+1−yk
xk+1−xk

to the left and right of
xk have opposite signs, then we set dk = 0.
If the slopes δk−1 and δk have the same sign and the
corresponding intervals are of the same length, then we set the
slope dk as the harmonic mean:

dk =
2

1
δk−1

+ 1
δk

.

If the slopes δk−1 and δk have the same sign, but the
corresponding intervals are of different length, then we set the
slope dk as a weighted harmonic mean:

dk =
w1 + w2
w1
δk−1

+ w2
δk

,

where w1 = 2hk + hk−1, w2 = hk + 2hk−1, and hk = xk+1 − xk .

fasshauer@iit.edu MATH 350 – Chapter 3 23

http://math.iit.edu/~fass


Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dk?
The idea is to avoid over- and undershoots at each xk .

If the slopes δk−1 =
yk−yk−1
xk−xk−1

and δk =
yk+1−yk
xk+1−xk

to the left and right of
xk have opposite signs, then we set dk = 0.
If the slopes δk−1 and δk have the same sign and the
corresponding intervals are of the same length, then we set the
slope dk as the harmonic mean:

dk =
2

1
δk−1

+ 1
δk

.

If the slopes δk−1 and δk have the same sign, but the
corresponding intervals are of different length, then we set the
slope dk as a weighted harmonic mean:

dk =
w1 + w2
w1
δk−1

+ w2
δk

,

where w1 = 2hk + hk−1, w2 = hk + 2hk−1, and hk = xk+1 − xk .
fasshauer@iit.edu MATH 350 – Chapter 3 23

http://math.iit.edu/~fass


Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

How does pchip set the slopes dk? (cont.)

The slopes at the endpoints are set by slightly different rules.

Run PchipDemo.m to see an example of the shape-preserving
C1-cubic Hermite interpolant, and view pchiptx.m from [NCM] for
more details (for example, how the slopes at the endpoints are
determined).
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Piecewise Polynomial Interpolation Piecewise Cubic Hermite Interpolation

Remark
While the derivative of the shape-preserving piecewise cubic Hermite
interpolant at the breakpoints will always be continuous, it is in general
not differentiable. This means that pchip generates a C1-continuous
interpolant.

In order to get a piecewise cubic interpolant that is C2-continuous at
the breakpoints we need to consider splines.

One reason for wanting a C2 interpolant is
that light reflections appear with a smooth-
ness of one order lower than the reflecting
surface, i.e., a C1 surface will generate non-
smooth light reflections. Car manufacturers
and owners don’t like this!
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Spline Interpolation

Outline

1 Motivation and Applications

2 Polynomial Interpolation

3 Piecewise Polynomial Interpolation

4 Spline Interpolation

5 Interpolation in Higher Space Dimensions
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Spline Interpolation

History of Splines

Mathematical splines originated in the CAD software developed by the
aircraft and automobile design industry in the late 1950s and early
1960s and were named after a special wooden or metal drafting tool
used in the manual design of ship hulls:

a spline.
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Spline Interpolation

General Splines

Splines are special piecewise polynomials whose order of smoothness
at the breakpoints is always one less than the polynomial degree.

Example
If the pieces are generated by linear func-
tions, then the smoothness is zero, i.e., the
pieces join continuously, but the derivatives
are in general not continuous. This is the
same as the piecewise linear interpolant dis-
cussed earlier.

Cubic splines are required to join with C2

smoothness (i.e., continuously differentiable
first derivative) at the knots. This is more spe-
cific than general piecewise cubics.
In general, a spline of degree k will have Ck−1 smoothness at the
breakpoints.
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Spline Interpolation Cubic Spline Interpolation

The most interesting — and also most commonly used — splines are
the cubic splines.

We can start exactly as with the pchip interpolant, i.e.,

p(x) =
3hs2 − 2s3

h3 yk+1 +
h3 − 3hs2 + 2s3

h3 yk +
s2(s − h)

h2 dk+1 +
s(s − h)2

h2 dk

where s = x − xk , h = xk+1− xk , and dk and dk+1 are slopes at xk and
xk+1 (to be determined by the spline method). Moreover (as before),

p′(x) =
6hs − 6s2

h3 yk+1 −
6hs − 6s2

h3 yk +
3s2 − 2sh

h2 dk+1 +
(s − h)(3s − h)

h2 dk

and now also

p′′(x) =
6h − 12s

h3 yk+1 −
6h − 12s

h3 yk +
6s − 2h

h2 dk+1 +
6s − 4h

h2 dk

=
(6h − 12s)δk + (6s − 2h)dk+1 + (6s − 4h)dk

h2 ,

where δk =
yk+1−yk

h =
yk+1−yk
xk+1−xk

.
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Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

We need to have cubic pieces between the breakpoints/knots.

At the knots we need to
join together continuously,
join with a continuous derivative,
join with a continuous second derivative.

Each piece needs to interpolate the corresponding data, i.e.,
p(xi) = yi , i = k , k + 1.

How far are we on this list?
Cubic pieces X

Continuous joints automatically covered by interpolation X

Continuous derivative also covered by construction X

Continuous second derivative — still to be done
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Continuous joints automatically covered by interpolation X

Continuous derivative

also covered by construction X

Continuous second derivative — still to be done

fasshauer@iit.edu MATH 350 – Chapter 3 30

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

We need to have cubic pieces between the breakpoints/knots.
At the knots we need to

join together continuously,
join with a continuous derivative,
join with a continuous second derivative.

Each piece needs to interpolate the corresponding data, i.e.,
p(xi) = yi , i = k , k + 1.

How far are we on this list?
Cubic pieces X

Continuous joints automatically covered by interpolation X

Continuous derivative also covered by construction X

Continuous second derivative — still to be done

fasshauer@iit.edu MATH 350 – Chapter 3 30

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

We need to have cubic pieces between the breakpoints/knots.
At the knots we need to

join together continuously,
join with a continuous derivative,
join with a continuous second derivative.

Each piece needs to interpolate the corresponding data, i.e.,
p(xi) = yi , i = k , k + 1.

How far are we on this list?
Cubic pieces X

Continuous joints automatically covered by interpolation X

Continuous derivative also covered by construction X

Continuous second derivative

— still to be done

fasshauer@iit.edu MATH 350 – Chapter 3 30

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

What conditions does a cubic spline interpolant have
to satisfy?

We need to have cubic pieces between the breakpoints/knots.
At the knots we need to

join together continuously,
join with a continuous derivative,
join with a continuous second derivative.

Each piece needs to interpolate the corresponding data, i.e.,
p(xi) = yi , i = k , k + 1.

How far are we on this list?
Cubic pieces X

Continuous joints automatically covered by interpolation X

Continuous derivative also covered by construction X

Continuous second derivative — still to be done

fasshauer@iit.edu MATH 350 – Chapter 3 30

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′
We need to consider two different cubic polynomial pieces:

pk−1, defined on [xk−1, xk ], and pk , defined on [xk , xk+1].

From above, we know
p′′k−1(x) =

(6h − 12s)δk−1 + (6s − 2h)dk + (6s − 4h)dk−1

h2 ,

p′′k (x) =
(6h − 12s)δk + (6s − 2h)dk+1 + (6s − 4h)dk

h2 ,

We now need to evaluate at x = xk .
p′′k : −→ s = x − xk |x=xk = 0
p′′k−1: −→ s = x − xk−1|x=xk = xk − xk−1 = hk−1

Therefore1,
p′′k−1(xk ) =

(6hk−1 − 12hk−1)δk−1 + (6hk−1 − 2hk−1)dk + (6hk−1 − 4hk−1)dk−1

h2
k−1

=
−6δk−1 + 4dk + 2dk−1

hk−1
,

p′′k (xk ) =
6hkδk − 2hk dk+1 − 4hk dk

h2
k

=
6δk − 2dk+1 − 4dk

hk
.

1

now being more careful with notation and adding subscripts to h (which technically
should’ve been there earlier, but were omitted to prevent notational clutter)
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′ (cont.)

To get continuity we now need to ensure p′′k−1(xk ) = p′′k (xk ), i.e.,

−6δk−1 + 4dk + 2dk−1

hk−1
=

6δk − 2dk+1 − 4dk

hk
.

Since the hk and δk are differences of the given data values (and
therefore known quantities) we isolate them to the right-hand side and
get

4dk + 2dk−1

hk−1
+

2dk+1 + 4dk

hk
=

6δk−1

hk−1
+

6δk

hk

⇐⇒ (2dk + dk−1)hk + (dk+1 + 2dk )hk−1 = 3δk−1hk + 3δkhk−1

⇐⇒ hkdk−1 + 2(hk−1 + hk )dk + hk−1dk+1 = 3(hk−1δk + hkδk−1).
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′ (cont.)
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Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′ (cont.)
Note that the equation, which we derived for an arbitrary knot xk ,

hkdk−1 + 2(hk−1 + hk )dk + hk−1dk+1 = 3(hk−1δk + hkδk−1)

needs to hold for all interior knots x2, x3, . . . , xn−1,

i.e., we have the
(n − 2)× n system of linear equations Ad = r with tridiagonal

A =


h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

 ,

d =



d1

d2

d3
...

dn−1

dn


, r = 3


h1δ2 + h2δ1

h2δ3 + h3δ2
...

hn−2δn−1 + hn−1δn−2



Problem: We don’t have enough conditions to determine all of the n
unknown slope values d1, . . . ,dn!

fasshauer@iit.edu MATH 350 – Chapter 3 33

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′ (cont.)
Note that the equation, which we derived for an arbitrary knot xk ,

hkdk−1 + 2(hk−1 + hk )dk + hk−1dk+1 = 3(hk−1δk + hkδk−1)

needs to hold for all interior knots x2, x3, . . . , xn−1, i.e., we have the
(n − 2)× n system of linear equations Ad = r with tridiagonal

A =


h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

 ,

d =



d1

d2

d3
...

dn−1

dn


, r = 3


h1δ2 + h2δ1

h2δ3 + h3δ2
...

hn−2δn−1 + hn−1δn−2



Problem: We don’t have enough conditions to determine all of the n
unknown slope values d1, . . . ,dn!

fasshauer@iit.edu MATH 350 – Chapter 3 33

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

How to get continuity of p′′ (cont.)
Note that the equation, which we derived for an arbitrary knot xk ,

hkdk−1 + 2(hk−1 + hk )dk + hk−1dk+1 = 3(hk−1δk + hkδk−1)

needs to hold for all interior knots x2, x3, . . . , xn−1, i.e., we have the
(n − 2)× n system of linear equations Ad = r with tridiagonal

A =


h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

 ,

d =



d1

d2

d3
...

dn−1

dn


, r = 3


h1δ2 + h2δ1

h2δ3 + h3δ2
...

hn−2δn−1 + hn−1δn−2



Problem: We don’t have enough conditions to determine all of the n
unknown slope values d1, . . . ,dn!

fasshauer@iit.edu MATH 350 – Chapter 3 33

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

End Conditions

There are many different types of cubic splines. They differ by which
two equations we add to the linear system Ad = r to determine the
slopes at the endpoints x1 and xn.

For example,
cubic natural splines: use zero second derivative at ends,
cubic not-a-knot splines: use a single cubic on first two and last
two intervals,
cubic clamped (or complete) splines: specify first derivative values
at ends,
cubic periodic splines: ensure that value of function, first and
second derivative are same at both ends.
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines
We set p′′(x) = 0 when x is one of the endpoints, x1 or xn.

Physically,
this has the effect of forcing the interpolating spline to have zero
curvature at the ends, i.e., its behavior is similar to that of a thin rod

see mechanical spline .
Left end (enforce p′′1(x1) = 0): From above we know

p′′1(x1) =
6δ1 − 2d2 − 4d1

h1
,

so that we have the condition

4d1 + 2d2 = 6δ1. (3)

Right end (enforce p′′n−1(xn) = 0): From above

p′′n−1(xn) =
−6δn−1 + 4dn + 2dn−1

hn−1
,

so that
2dn−1 + 4dn = 6δn−1. (4)
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic natural spline is obtained by adding equations (3) and (4) to
the generic (n − 2)× n tridiagonal linear system we derived earlier.

Its
components are

A =



2 1
h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

1 2


,

d =



d1

d2

d3
...

dn−1

dn


, r = 3



δ1

h1δ2 + h2δ1

h2δ3 + h3δ2
...

hn−2δn−1 + hn−1δn−2

δn−1
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Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines (cont.)

The final linear system Ad = r to be solved for the unknown slopes of
the cubic natural spline is obtained by adding equations (3) and (4) to
the generic (n − 2)× n tridiagonal linear system we derived earlier. Its
components are

A =



2 1
h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

1 2


,

d =



d1

d2

d3
...

dn−1

dn


, r = 3



δ1

h1δ2 + h2δ1

h2δ3 + h3δ2
...

hn−2δn−1 + hn−1δn−2

δn−1


fasshauer@iit.edu MATH 350 – Chapter 3 36

http://math.iit.edu/~fass


Spline Interpolation Cubic Spline Interpolation

Cubic Natural Splines (cont.)

Remark

The cubic natural spline is that interpolating C2 function which
minimizes the model for the bending energy of a thin rod. Thus the
name seems justified.

The modified version splinetx_natural.m of the [NCM] routine
splinetx.m performs cubic spline interpolation with natural end
conditions.

See SplineDemo.m for an example.
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Spline Interpolation Cubic Spline Interpolation

Cubic Not-a-Knot Splines

Since the generic linear system is missing two equations (and we may
not have any more data than the function values at the break points),
we condense the representation and use two subintervals near each
end (instead of one) to generate the cubic pieces.

Left end: define one cubic piece on x1 ≤ x < x3, i.e., x2 is not a knot.
Without giving the details2 this leads to

h2d1 + (h1 + h2)d2 =
(3h1 + 2h2)h2δ1 + h2

1δ2

h1 + h2
. (5)

Right end: define one cubic piece on xn−2 ≤ x ≤ xn, i.e., xn−1 is not a
knot. Thus,

(hn−1 + hn−2)dn−1 + hn−2dn =
h2

n−1δn−2 + (2hn−2 + 3hn−1)hn−2δn−1

hn−2 + hn−1
.

(6)
2we need to ensure that p′′′1 (x2) = p′′′2 (x2)
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Spline Interpolation Cubic Spline Interpolation

Cubic Not-a-Knot Splines (cont.)
The final linear system Ad = r to be solved for the unknown slopes of
the cubic not-a-knot spline is obtained by adding equations (5) and (6)
to the tridiagonal (n − 2)× n linear system we derived earlier.

Its
components are

A =



h2 h1 + h2

h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

. . .
. . .

. . .
hn−1 2(hn−2 + hn−1) hn−2

hn−1 + hn−2 hn−2


,

d =



d1

d2

d3
...

dn−1

dn


, r =



(3h1+2h2)h2δ1+h2
1δ2

h1+h2
3(h1δ2 + h2δ1)
3(h2δ3 + h3δ2)

...
3(hn−2δn−1 + hn−1δn−2)

h2
n−1δn−2+(2hn−2+3hn−1)hn−2δn−1

hn−2+hn−1
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Spline Interpolation Cubic Spline Interpolation

Cubic Not-a-Knot Splines (cont.)
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Spline Interpolation Cubic Spline Interpolation

Splines in MATLAB

[NCM] includes the function splinetx.m that works similarly to
pchiptx.m discussed earlier. It is a simplified version of the built-in
spline function and evaluates a cubic not-a-knot interpolating spline.

MATLAB’s built-in spline function allows us to perform cubic clamped
spline interpolation by setting the values of the derivatives of the spline
at the left and right ends in the vector y (which now must contain two
more entries than x).
See the script SplineDemo.m for an example of cubic not-a-knot,
natural, and clamped spline interpolation.
It can be shown that for generic interpolation problems (when we don’t
know much about the behavior near the endpoints) the cubic
not-a-knot spline is the most accurate of the three cubic spline
methods discussed here.
There is also an entire toolbox for splines written by Carl de Boor, one
of the leaders in the field (see also [de Boor]).
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Spline Interpolation Cubic Spline Interpolation

Related Methods

There are many other related interpolation methods such as
B-splines,
Bézier splines,
splines with non-uniform knots,
rational splines,
rational splines with non-uniform knots (NURBS)

If the curves are more complicated, then we can use all methods in
parametric form. This has applications, e.g., in the design of
typesetting fonts.
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Interpolation in Higher Space Dimensions

Outline

1 Motivation and Applications

2 Polynomial Interpolation

3 Piecewise Polynomial Interpolation

4 Spline Interpolation

5 Interpolation in Higher Space Dimensions
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Interpolation in Higher Space Dimensions Theoretical Insights

What happens in higher dimensions?

Theorem (Mairhuber-Curtis)
If we fix n ≥ 2 basis functions B1, . . . ,Bn in two or more space
dimensions, then we may always be able to find n data points
x1, . . . ,xn such that the Vandermonde-like interpolation matrix

B1(x1) B2(x1) . . . Bn(x1)
B1(x2) B2(x2) . . . Bn(x2)

...
...

. . .
...

B1(xn) B2(xn) . . . Bn(xn)


with entries Bk (x j) is singular.
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Interpolation in Higher Space Dimensions Theoretical Insights

What does the Mairhuber-Curtis theorem actually say?

The M-C theorem implies that we can’t choose our basis
independent of the data locations, i.e., the basis has to be chosen
after the data sites. It has to be a data-dependent basis.

As a consequence we can no longer use (multivariate)
polynomials for arbitrary data in higher dimensions.

Radial basis functions present one way to circumvent the problem
presented by the Mairhuber-Curtis theorem.
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Interpolation in Higher Space Dimensions Theoretical Insights

Proof.
Assume that we have a basis {B1, . . . ,Bn} with n ≥ 2 such for arbitrary
data that the interpolation is non-singular, i.e.

det
(
Bk (x j)

)
6= 0 (7)

for any distinct x1, . . . ,xn.

We need to show that this leads to a contradiction.

Mairhuber-Curtis Movie

Since the determinant is a continuous function of x1 and x2 we must
have had det = 0 at some point along the continuous path in our
interpolation domain. This contradicts (7).
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Interpolation in Higher Space Dimensions A Few More Applications

Gasoline Engine Design
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Gasoline Engine Design
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Variables:

spark timing
speed
load
air-fuel ratio

http://math.iit.edu/~fass


Interpolation in Higher Space Dimensions A Few More Applications

Gasoline Engine Design

fasshauer@iit.edu MATH 350 – Chapter 3 46

Variables:

spark timing exhaust gas re-circulation rate
speed intake valve timing
load exhaust valve timing
air-fuel ratio

http://math.iit.edu/~fass


Interpolation in Higher Space Dimensions A Few More Applications

Gasoline Engine Design

fasshauer@iit.edu MATH 350 – Chapter 3 46

Variables:

spark timing exhaust gas re-circulation rate fuel injection timing
speed intake valve timing
load exhaust valve timing
air-fuel ratio
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Interpolation in Higher Space Dimensions A Few More Applications

Engine Data Fitting

input ? output
x1 = spark timing
x2 = speed
x3 = load
x4 = air-fuel ratio


f (x1,x2,x3,x4)

=⇒ fuel consumption
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Find a function (model) that fits the “input” variables and
“output” (fuel consumption), and use the model to decide
which variables lead to an optimal fuel consumption.
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Interpolation in Higher Space Dimensions A Few More Applications

Fuel Consumption Model
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Tanya Morton, The MathWorks
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Interpolation in Higher Space Dimensions A Few More Applications

Rapid Prototyping

An important application of interpolation (or very good approximation)
methods is the creation of computer models by scanning physical
objects such as historic artifacts or even household appliance parts,
and then using interpolation to produce a surface or solid model that
can be fed into the manufacturing process.

Special 3D printers can then be used to quickly and easily generate
“clones” of the original object.

See, e.g.,
[Prof. Qian’s website] in IIT’s MMAE department,
[The Digital Michelangelo Project] at Stanford University,
this article [about 3D printers].
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Interpolation in Higher Space Dimensions A Few More Applications

Special Movie Effects http://www.fastscan3d.com

trollscanning.mpeg

Source is here [FastSCAN]. Also look at this [Lord of the Rings].
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