
MATH 350: Introduction to Computational
Mathematics

Chapter II: Solving Systems of Linear Equations

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Spring 2011

fasshauer@iit.edu MATH 350 – Chapter 2 1

http://math.iit.edu/~fass

Outline
1 Applications, Motivation and Background Information

2 Gaussian Elimination = LU Decomposition

3 Forward and Back Substitution in MATLAB

4 Partial Pivoting

5 MATLAB Implementation of LU-Decomposition

6 Roundoff Error and the Condition Number of a Matrix

7 Special Matrices

8 An Application: Google’s Page Rank

fasshauer@iit.edu MATH 350 – Chapter 2 2

http://math.iit.edu/~fass

Applications, Motivation and Background Information Applications

Where do systems of linear equations come up?
Everywhere!

They appear straightforwardly in
analytic geometry (intersection of lines and planes),
traffic flow networks,
Google page ranks,
linear optimization problems (MATH 435),
Leontief’s input-output model in economics,
electric circuit problems,
the steady-state analysis of a system of chemical or biological
reactors,
the structural analysis of trusses,
and many other applications.

They will appear as intermediate or final steps in many numerical
methods such as

polynomial or spline interpolation (Ch. 3),
the solution of nonlinear systems (Ch. 4),
least squares fitting,
the solution of systems of differential equations (Ch. 6),
and many other advanced numerical methods.

fasshauer@iit.edu MATH 350 – Chapter 2 4

http://math.iit.edu/~fass

Applications, Motivation and Background Information Representation of Linear Systems

Equation form:

x1 + 2x2 + 3x3 = 1
2x1 + x2 + 4x3 = 1
3x1 + 4x2 + x3 = 1

Matrix form: Ax = b, with

A =

 1 2 3
2 1 4
3 4 1

 , x =

 x1
x2
x3

 , b =

 1
1
1

 .
Note: We will always think of vectors as column vectors. If we need to
refer to a row vector we will use the notation xT .

Remark
Most of the material discussed in this chapter can be found in Chapter
2 of [NCM].

fasshauer@iit.edu MATH 350 – Chapter 2 5

http://math.iit.edu/~fass

Applications, Motivation and Background Information Avoid Inverses

Never use A−1 to solve Ax = b

In linear algebra we learn that the solution of

Ax = b

is given by
x = A−1b.

This is correct, but inefficient and more prone to roundoff errors.

Always solve linear systems (preferably with some decomposition
method such as LU, QR or SVD).

fasshauer@iit.edu MATH 350 – Chapter 2 6

http://math.iit.edu/~fass

Applications, Motivation and Background Information Avoid Inverses

Never use A−1 to solve Ax = b (cont.)
Example
Consider the trivial “system” 7x = 21 and compare solution via the
“inverse” and by straightforward division.

Solution

Division immediately yields x = 21
7 = 3.

Use of the “inverse” yields

x = 7−1 × 21 = 0.142857× 21 = 2.999997.

Clearly, use of the inverse requires more work (first compute the
inverse, then multiply it into the right-hand side), and it is less accurate.
This holds even more so for larger systems of equations.

Note that MATLAB is “smarter” than this so that 7^(-1)*21 is still
equal 3 (but slower than division, see division.m).

fasshauer@iit.edu MATH 350 – Chapter 2 7

http://math.iit.edu/~fass

Applications, Motivation and Background Information Matrix Division in MATLAB

How to solve linear systems by “division” in MATLAB

In order to mimic what we do (naturally) for a single equation, MATLAB

provides two very sophisticated matrix division operators:
For systems AX = B, we have the backslash (or mldivide)
operator, i.e.,

X = A\B,

and XA = B is solved using a forward slash or (mrdivide)
operator, i.e.,

X = B/A.

Remark
These operators provide black boxes for the solution of (possibly even
non-square or singular) systems of linear equations.

We now want to understand a bit of what goes on “inside” the
algorithms.

fasshauer@iit.edu MATH 350 – Chapter 2 8

http://math.iit.edu/~fass

Applications, Motivation and Background Information A Simple Example

Example
Solve the 3× 3 linear system

x1 + 2x2 + 3x3 = 1
2x1 + x2 + 4x3 = 1
3x1 + 4x2 + x3 = 1

using a simple (easily programmable) algorithm.

Solution
The main idea is to systematically reduce the system to upper
triangular form since triangular systems are easy to solve.
Thus, we will have

an elimination phase (resulting in an upper triangular system),
and a back substitution phase (during which we solve for the
variables).

fasshauer@iit.edu MATH 350 – Chapter 2 9

http://math.iit.edu/~fass

Applications, Motivation and Background Information A Simple Example

Solution (cont.)

x1 + 2x2 + 3x3 = 1 (1)
2x1 + x2 + 4x3 = 1 (2)
3x1 + 4x2 + x3 = 1 (3)

Use multiples of the first equation to eliminate x1 from the other two
equations:

x1 + 2x2 + 3x3 = 1 (1)
(2)−2×(1)−→ −3x2 − 2x3 = −1 (2’)
(3)−3×(1)−→ −2x2 − 8x3 = −2 (3’)

Use multiples of the new second equation to eliminate x2 from the third
equation:

x1 + 2x2 + 3x3 = 1 (1)
−3x2 − 2x3 = −1 (2’)

(3′)− 2
3×(2

′)
−→ −20

3
x3 = −4

3
(3”)

fasshauer@iit.edu MATH 350 – Chapter 2 10

http://math.iit.edu/~fass

Applications, Motivation and Background Information A Simple Example

Solution (cont.)
The system

x1 + 2x2 + 3x3 = 1 (1)
−3x2 − 2x3 = −1 (2’)

−20
3

x3 = −4
3

(3”)

is upper triangular.
Now we do the back substitution:

From (3”): x3 = −4/3
−20/3 = 1

5

Insert x3 into (2’): x2 = −1
3

(
−1 + 2

(1
5

))
= 1

5

Insert x3 and x2 into (1): x1 =
(
1− 3

(1
5

)
− 2

(1
5

))
= 0

Remark
In order to have an algorithm it is important to be consistent: in the
elimination phase always subtract multiples of the pivot row from rows
below it.

fasshauer@iit.edu MATH 350 – Chapter 2 11

http://math.iit.edu/~fass

Gaussian Elimination = LU Decomposition

The algorithm from the previous example is known as Gaussian
elimination (even though it can be found in Chinese writings from around 150 B.C., see “The Story of Maths”, Episode 2)

Using matrix notation, the original system, Ax = b, is 1 2 3
2 1 4
3 4 1

x =

 1
1
1

 .
After the elimination phase we end up with the upper triangular matrix

U =

 1 2 3
0 −3 −2
0 0 −20

3

 .
Note that A can be written as A = LU, with U as above, and

L =

 1 0 0
2 1 0
3 2

3 1

 ,
where the entries in the lower triangular part of L correspond to the
multipliers used in the elimination phase.

fasshauer@iit.edu MATH 350 – Chapter 2 13

http://math.iit.edu/~fass

Gaussian Elimination = LU Decomposition

What is the advantage of LU factorization?

Consider the system Ax = b with LU factorization A = LU, i.e., we
have

L Ux︸︷︷︸
=y

= b.

We can now solve the linear system by solving two easy triangular
systems:

1 Solve the lower triangular system Ly = b for y by forward
substitution.

2 Solve the upper triangular system Ux = y for x by back
substitution.

fasshauer@iit.edu MATH 350 – Chapter 2 14

http://math.iit.edu/~fass

Gaussian Elimination = LU Decomposition

An even greater advantage

Consider the problem AX = B with many different right-hand sides
associated with the same system matrix.
In this case we need to compute the factorization A = LU only once,
and then

AX = B ⇐⇒ LUX = B.

We then proceed as before:
1 Solve LY = B by many forward substitutions (in parallel).
2 Solve UX = Y by many back substitutions (in parallel).

Remark
In order to appreciate the usefulness of this approach, note that one
can show that the operations count for the matrix factorization is
O(2

3n3), while that for forward and back substitution is O(n2).

fasshauer@iit.edu MATH 350 – Chapter 2 15

http://math.iit.edu/~fass

Forward and Back Substitution in MATLAB Forward Substitution

We can easily solve a lower triangular system Lx = b by simple
forward substitution.
In MATLAB this is done with the following function:

function x = forward(L,x)
% FORWARD. For lower triangular L,
% x = forward(L,b) solves L*x = b.
[n,n] = size(L);
x(1) = x(1)/L(1,1);
for k = 2:n % for each row, from the top down

j = 1:k-1; % all columns simultaneously
x(k) = (x(k) - L(k,j)*x(j))/L(k,k);

end

Note that L(k,j)*x(j) calculates a dot product. Also, note that the
right-hand side vector, here x, is overwritten with the solution.
This function is included in bslashtx.m (see later).

fasshauer@iit.edu MATH 350 – Chapter 2 17

http://math.iit.edu/~fass

Forward and Back Substitution in MATLAB Back Substitution

An upper triangular system Ux = b is solved by back substitution.
The MATLAB code is:

function x = backsubs(U,x)
% BACKSUBS. For upper triangular U,
% x = backsubs(U,b) solves U*x = b.
[n,n] = size(U);
x(n) = x(n)/U(n,n);
for k = n-1:-1:1 % for each row, from the bottom up

j = k+1:n; % all columns simultaneously
x(k) = (x(k) - U(k,j)*x(j))/U(k,k);

end

Again, U(k,j)*x(j) calculates a dot product, and the right-hand side
vector is overwritten with the solution.
This function is also included in bslashtx.m (see later).

fasshauer@iit.edu MATH 350 – Chapter 2 18

http://math.iit.edu/~fass

Partial Pivoting

Example
Use Gaussian elimination to solve the linear system

6x1 + 2x2 + 2x3 = −2

2x1 +
2
3

x2 +
1
3

x3 = 1

x1 + 2x2 − x3 = 0.

Solution
See the Maple worksheet PartialPivoting.mw.
Using simulated double-precision and standard Gaussian elimination
we get the answer

x = [1.33333333333335,0,−5.00000000000003]T .

Swapping rows to obtain a “good” pivot gives the correct solution

x = [2.60000000000002,−3.80000000000001,−5.00000000000003]T .

fasshauer@iit.edu MATH 350 – Chapter 2 20

http://math.iit.edu/~fass

Partial Pivoting

How to choose “good” pivots

The partial pivoting strategy is a simple one.
In order to avoid the tiny multipliers we encountered in the example
above,

at step k of the elimination algorithm we take that element in rows
k through n of the k -th column which is largest in absolute value
as the new pivot element.
We also swap the k -th row with the new pivot row (or keep track of
this swap in a permutation matrix P – see next slide).

Example
In step k = 2 of the previous example we need to check the elements
in the second column of the last two rows to find that the new pivot is
the element a32, i.e., the larger of |a22| and |a32|

A =

 6 2 2
0 10−15 −0.3333
0 1.6667 −1.3333

 (2)↔(3)−→

 6 2 2
0 1.6667 −1.3333
0 10−15 −0.3333

fasshauer@iit.edu MATH 350 – Chapter 2 21

http://math.iit.edu/~fass

Partial Pivoting

Permutation Matrices

An identity matrix whose rows have been permuted is called a
permutation matrix. For example,

P =

 1 0 0
0 0 1
0 1 0

 .
If we multiply a matrix A by a permutation matrix P, then we can either

swap the rows of A (if we multiply from the left), i.e.,

PA =

 1 0 0
0 0 1
0 1 0

 1 2 3
2 1 4
3 4 1

 =

 1 2 3
3 4 1
2 1 4

 ,
or swap the columns (by multiplying from the right), i.e.,

AP =

 1 2 3
2 1 4
3 4 1

 1 0 0
0 0 1
0 1 0

 =

 1 3 2
2 4 1
3 1 4

 .
fasshauer@iit.edu MATH 350 – Chapter 2 22

http://math.iit.edu/~fass

Partial Pivoting

Pivoting revisited

In the Maple worksheet PartialPivoting.mw we saw that
Gaussian elimination (with partial pivoting) for the matrix

A =

 6 2 2
2 2

3
1
3

1 2 −1

leads to

L =

 1 0 0
0.1667 1 0
0.3333 5.9999× 10−16 1

 , U =

 6 2 2
0 1.6667 −1.3333
0 0 −0.3333

 .
With the permutation matrix

P =

 1 0 0
0 0 1
0 1 0

we can write the LU decomposition as PA = LU.

fasshauer@iit.edu MATH 350 – Chapter 2 23

http://math.iit.edu/~fass

MATLAB Implementation of LU-Decomposition The Program lutx.m from [NCM]

The Program lutx.m from [NCM]
Most important statements of Gaussian elimination code:

for k = 1:n-1 % for each row
:
:
% Compute multipliers
i = k+1:n; % for all remaining rows
A(i,k) = A(i,k)/A(k,k);
% Update the remainder of the matrix
j = k+1:n; % and all remaining columns
A(i,j) = A(i,j) - A(i,k)*A(k,j);

end
Note: This would be quite a bit more involved in a programming
language that does not use matrices and vectors as building blocks.
In fact, A(i,j) is a matrix, and A(i,k)*A(k,j) is (column
vector)×(row vector), i.e., a rank one matrix.
Both matrices are of size (n − k)× (n − k).

fasshauer@iit.edu MATH 350 – Chapter 2 25

http://math.iit.edu/~fass

MATLAB Implementation of LU-Decomposition The Program bslashtx.m from [NCM]

The Program bslashtx.m from [NCM]

The code represents a (simplified) readable version of the MATLAB

backslash solver (which – as a built-in function – cannot be viewed by
us).
It looks for special cases:

lower triangular systems (for which it uses forward.m discussed
earlier),
upper triangular systems (for which it uses backsubs.m
discussed earlier),
symmetric positive definite systems (for which it uses MATLAB’s
built-in chol function).

For general systems it calls lutx.m.

fasshauer@iit.edu MATH 350 – Chapter 2 26

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix Roundoff Error

Consider Ax = b with square nonsingular matrix A. We use the
following notation: computed solution: x∗ and exact solution x = A−1b.
There are two ways to measure how good the solution is:

error: e = x − x∗
residual: r = b − Ax∗

Note that error and residual are connected:

r = b − Ax∗ = Ax − Ax∗ = A(x − x∗︸ ︷︷ ︸
=e

) = Ae,

i.e., e is the (exact) solution of the linear system

Ae = r .

Remark
Since A is nonsingular we clearly have: e = 0 ⇐⇒ r = 0.
However, a “small” residual need not imply a “small” error (or vice
versa).

fasshauer@iit.edu MATH 350 – Chapter 2 28

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix Roundoff Error

“Gaussian elimination with partial pivoting always
produces small residuals” (see some qualifying remarks in [NCM])

Example
Solve the linear system

0.780x1 + 0.563x2 = 0.217 (4)
0.913x1 + 0.659x2 = 0.254 (5)

using Gaussian elimination with partial pivoting on a three-digit
decimal computer.

Solution

After swapping the two equations the multiplier is 0.780
0.913 = 0.854, and

0.913x1 + 0.659x2 = 0.254 (5)
(4)−0.854×(5)−→ 0.001x2 = 0.001 (4’)

fasshauer@iit.edu MATH 350 – Chapter 2 29

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix Roundoff Error

Solution (cont.)

Back substitution yields

x2 =
0.001
0.001

= 1.00, x1 =
0.254− 0.659(1.00)

0.913
= −0.443

so that x∗ = [−0.443 1.00]T .
We may now want to check the “accuracy” of our solution by
computing the residual (let’s do that with higher accuracy):

r = b − Ax∗ =
[

0.217
0.254

]
−
[

0.780 0.563
0.913 0.659

] [
−0.443

1.00

]
=

[
−0.000460
−0.000541

]
,

so that we are led to believe that our solution is accurate.
However, the exact solution is x = [1− 1]T .

fasshauer@iit.edu MATH 350 – Chapter 2 30

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix Roundoff Error

Solution (cont.)

Thus, the error is

e = x − x∗ =
[

1
−1

]
−
[
−0.443

1

]
=

[
1.443
−2

]
which is larger than the solution itself!

Q: When can we trust the residual, i.e., when does a small
residual guarantee a small error?

A: When the condition number of A is small.

fasshauer@iit.edu MATH 350 – Chapter 2 31

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

In order to understand the concept of the condition number of a matrix
we need to introduce the concepts of vector and matrix norms.

Example
The most important vector norms are

‖x‖1 =
n∑

i=1

|x i |, `1-norm or Manhattan norm.

‖x‖2 =

(
n∑

i=1

|x i |2
)1/2

, `2-norm or Euclidean norm.

‖x‖∞ = max
1≤i≤n

|x i |, `∞-norm, maximum norm or Chebyshev norm.

‖x‖p =

(
n∑

i=1

|x i |p
)1/p

, `p-norm.

fasshauer@iit.edu MATH 350 – Chapter 2 32

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure: Unit “circles” for the `1, `2 and `∞ norms.

In general, any norm satisfies
1 ‖x‖ ≥ 0 for every vector x , and ‖x‖ = 0 only if x = 0.
2 ‖αx‖ = |α|‖x‖ for every vector x , and scalar α.
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all vectors x ,y (triangle inequality).

fasshauer@iit.edu MATH 350 – Chapter 2 33

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

Example

Consider the vector x = [1, −2, 3]T . Compute ‖x‖p for p = 1,2,∞.

Solution

‖x‖1 =
3∑

i=1

|x i | = |1|+ | − 2|+ |3| = 6.

‖x‖2 =

(
n∑

i=3

|x i |2
)1/2

=
√

12 + (−2)2 + 32 =
√

14.

‖x‖∞ = max
1≤i≤n

|x i | = max{|1|, | − 2|, |3|} = 3.

fasshauer@iit.edu MATH 350 – Chapter 2 34

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

For an m × n matrix A, the most popular matrix norms can be
computed as follows:

The maximum column sum norm is given by

‖A‖1 = max
1≤j≤n

‖A(:, j)‖1

= max
1≤j≤n

m∑
i=1

|A(i , j)|.

‖A‖2 = max
1≤j≤n

|σj |, where σj is the j-th singular value of A.

We can compute σj =
√
λj (where λj are the eigenvalues of AT A),

or σj = |λj | (with λj the eigenvalues of a real symmetric A).
The maximum row sum norm is given by

‖A‖∞ = max
1≤i≤m

‖A(i , :)‖1

= max
1≤i≤m

n∑
j=1

|A(i , j)|.

fasshauer@iit.edu MATH 350 – Chapter 2 35

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

Example

Consider the Hilbert matrix A =

 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

. Compute ‖A‖p for

p = 1,2,∞.

Solution
Column sum norm:

‖A‖1 = max
1≤j≤3

3∑
i=1

|Aij |

= max
1≤j≤3

{1 + 1
2 + 1

3 ,
1
2 + 1

3 + 1
4 ,

1
3 + 1

4 + 1
5} =

11
6

= 1.8333.

2-norm:
‖A‖2 = max

1≤j≤3
|σj | = max

1≤j≤3
{1.4083,0.1223,0.0027} = 1.4083

Row sum norm: ‖A‖∞ = ‖A‖1 since A is symmetric.
fasshauer@iit.edu MATH 350 – Chapter 2 36

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

In the previous example the three different norms of A were of similar
magnitude.

Remark
All matrix norms are equivalent, i.e., comparable in size. In fact, for any
m × n matrix A we have

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
n‖A‖1,

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
m‖A‖∞.

Example
For the 3× 3 Hilbert matrix this implies:

1√
3
‖A‖∞ ≤ ‖A‖2 ≤

√
3‖A‖1

=⇒ 0.5774× 1.8333︸ ︷︷ ︸
=1.0585

≤ ‖A‖2 ≤ 1.7321× 1.8333︸ ︷︷ ︸
=3.1754

fasshauer@iit.edu MATH 350 – Chapter 2 37

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

Definition

The quantity κ(A) = ‖A‖‖A−1‖ is called the condition number of A.

Remark
The condition number depends on the type of norm used.

For the 2-norm of a nonsingular n × n matrix A we know ‖A‖2 = σ1
(the largest singular value of A).
Similarly, ‖A−1‖2 = 1

σn
(with σn the smallest singular value of A).

Thus,
κ(A) = ‖A‖2‖A−1‖2 =

σ1

σn
.

Note that κ(A) ≥ 1. In fact, this holds for any norm.

Singular values and the SVD are discussed in detail in MATH 477.

fasshauer@iit.edu MATH 350 – Chapter 2 38

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

Example

Consider the matrix A =

[
0.780 0.563
0.913 0.659

]
from our earlier example.

Compute κ2(A).

Solution
In MATLAB we compute the singular values of A with s = svd(A).
This yields

σ1 = 1.480952059, σ2 = 0.000000675,

so that
κ2(A) =

σ1

σ2
= 2.193218999× 106.

This is very large for a 2× 2 matrix.
Note that the latter can be obtained directly with the command
cond(A) in MATLAB.

fasshauer@iit.edu MATH 350 – Chapter 2 39

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

In order to see what effect the condition number has on the reliability of
the residual for predicting the accuracy of the solution to the linear
system we can refer to the following result.

Theorem
Consider the linear system Ax = b with computed solution x∗, residual
r = b − Ax∗, and exact solution x . Then

1
κ(A)

‖r‖
‖b‖ ≤

‖x − x∗‖
‖x‖ ≤ κ(A) ‖r‖‖b‖ ,

i.e., the relative error is bounded from above and below by the relative
residual and the condition number of A.

In particular, if the condition number of A is small (close to 1), then a
small residual will accurately predict a small error.

fasshauer@iit.edu MATH 350 – Chapter 2 40

http://math.iit.edu/~fass

Roundoff Error and the Condition Number of a Matrix The Condition Number of a Matrix

Earlier we used A =

[
0.780 0.563
0.913 0.659

]
with κ2(A) = 2.1932× 106.

For b =

[
0.217
0.254

]
(with ‖b‖2 = 0.3341) we had r =

[
−0.000460
−0.000541

]
(with

‖r‖2 = 7.1013× 10−4).
The theorem tells us

1
κ(A)

‖r‖
‖b‖ ≤

‖x−x∗‖
‖x‖ ≤ κ(A) ‖r‖‖b‖

=⇒ 1
2.1932×106

7.1013×10−4

0.3341 ≤ ‖x−x∗‖
‖x‖ ≤ 2.1932× 106 7.1013×10−4

0.3341

=⇒ 9.6912× 10−10 ≤ ‖x−x∗‖
‖x‖ ≤ 4.6617× 103.

This estimate ranges over 13 orders of magnitude and tells us that
since our matrix is ill-conditioned, the residual is totally unreliable.
Note that our relative error was
‖x − x∗‖
‖x‖ =

‖[−0.443,1.00]T − [1,−1]T‖
‖[1,−1]T‖ =

2.4662
1.4142

= 1.7439.

fasshauer@iit.edu MATH 350 – Chapter 2 41

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Definition
A matrix A is called sparse if many of its entries are zero. Otherwise, A
is called dense or full.

The MATLAB command nnz gives the number of nonzero entries in a
matrix, and so we can compute

density = nnz(A)/prod(size(A))
sparsity = 1 - density

A sparse matrix has very small density (i.e., sparsity close to 1).

An n × n diagonal matrix has density 1/n and sparsity 1− 1/n.

fasshauer@iit.edu MATH 350 – Chapter 2 43

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Sparse Matrices in MATLAB

Since it would be a waste to store every single entry in a sparse matrix
(many of which are zero), MATLAB has a special data structure to deal
with sparse matrices.

The MATLAB command

S = sparse(i,j,x,m,n)

produces an m × n sparse matrix S whose nonzero entries (specified
in the vector x) are located at the (i , j) positions (specified in the
vectors i and j of row and column indices, respectively).

fasshauer@iit.edu MATH 350 – Chapter 2 44

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Sparse Matrices in MATLAB (cont.)

Example
i = [1 1 3], j = [1 2 3], x = [1 1 1]
S = sparse(i,j,x,3,3)

produces

S =

 1 1 0
0 0 0
0 0 1

 .

A sparse matrix can be converted to the full format by A=full(S),
and a full matrix is converted to the sparse format by S=sparse(A).

fasshauer@iit.edu MATH 350 – Chapter 2 45

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Algorithms for Sparse Linear Systems

There are two main categories of algorithms to solve linear systems
Ax = b when A is sparse.

Direct methods:
Especially for tridiagonal or banded systems (see below). Done
with a custom implementation of Gaussian elimination.
MATLAB’s built-in solvers (such as the backslash solver) work with
the sparse matrix format.

Iterative methods (discussed in detail in MATH 477):
Stationary (“classical”) methods such as Jacobi, Gauss-Seidel or
SOR iteration.
Krylov subspace methods such as conjugate gradient or GMRES.
MATLAB has special routines for these and many others.

An efficient linear solver will always use as much structure of A as
possible.

fasshauer@iit.edu MATH 350 – Chapter 2 46

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Jacobi Iteration

Example
For the system

2x1 + x2 = 6
x1 + 2x2 = 6

the Jacobi method looks like

x (k)
1 =

(
6− x (k−1)

2

)
/2

x (k)
2 =

(
6− x (k−1)

1

)
/2.

We start with an initial guess [x (0)
1 , x (0)

2]T and then iterate to improve
the answer.

fasshauer@iit.edu MATH 350 – Chapter 2 47

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Jacobi Iteration (cont.)

In general,

Jacobi iteration

Let x (0) be an arbitrary initial guess
for k = 1,2, . . .

for i = 1 : m

x (k)
i =

bi −
i−1∑
j=1

aijx
(k−1)
j −

m∑
j=i+1

aijx
(k−1)
j

 /aii

end

end

fasshauer@iit.edu MATH 350 – Chapter 2 48

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Gauss-Seidel Iteration

Example
In order to improve the Jacobi method we notice that the value of
x (k−1)

1 used in the second equation of the example above is actually
outdated since we already computed a newer version, x (k)

1 , in the first
equation.
Therefore, we might consider

x (k)
1 =

(
6− x (k−1)

2

)
/2

x (k)
2 =

(
6− x (k)

1

)
/2

instead.
This is known as the Gauss-Seidel method.

fasshauer@iit.edu MATH 350 – Chapter 2 49

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Gauss-Seidel Iteration (cont.)

The general algorithm is of the form

Gauss-Seidel iteration

Let x (0) be an arbitrary initial guess
for k = 1,2, . . .

for i = 1 : m

x (k)
i =

bi −
i−1∑
j=1

aijx
(k)
j −

m∑
j=i+1

aijx
(k−1)
j

 /aii

end

end

fasshauer@iit.edu MATH 350 – Chapter 2 50

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Classical Iterative Solvers

The Jacobi or Gauss-Seidel method are conceptually very easy to
understand, but are not very useful for solving linear systems.

For example, MATLAB does not have any special code for them.

They are useful, however, in preconditioning given linear systems
for use with other — more powerful — iterative solvers.

They are also frequently used as preconditioners in domain
decomposition methods.

fasshauer@iit.edu MATH 350 – Chapter 2 51

http://math.iit.edu/~fass

Special Matrices Sparse Matrices

Example
The matrix (A = gallery(’poisson’,3); full(A))

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

is a typical sparse matrix that arises in the finite difference solution of
(partial) differential equations.
Note that all its nonzero entries are close to the diagonal, i.e., it is
banded (see next slide). It is even block tridiagonal.

fasshauer@iit.edu MATH 350 – Chapter 2 52

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Definition
A matrix A is called banded if its nonzero entries are all located on the
main diagonal as well as neighboring sub- and super-diagonals.

We can determine the bandwidth of A via

[i,j] = find(A) % finds indices of nonzero entries
bandwidth = max(abs(i-j))

Example
The finite difference matrix of the previous slide has bandwidth 3.

An n × n diagonal matrix has bandwidth zero.

We will see banded matrices in the context of spline interpolation.

fasshauer@iit.edu MATH 350 – Chapter 2 53

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Tridiagonal Matrices

A matrix whose upper and lower bandwidth are both 1 is called
tridiagonal. Tridiagonal matrices arise, e.g., when working with splines,
finite element, or finite difference methods.
A tridiagonal (or more general banded) matrix is usually given by
specifying its diagonals.

The MATLAB command A = gallery(’tridiag’,a,b,c) defines
the matrix

A =

b1 c1 0 . . . 0

a1 b2 c2
. . .

...

0
. 0

...
. . . an−2 bn1 cn−1

0 . . . 0 an−1 bn

Note that the vectors a and c specifying the sub- and superdiagonals,
respectively, have one entry fewer than the diagonal b.

fasshauer@iit.edu MATH 350 – Chapter 2 54

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Other ways to create tridiagonal matrices in MATLAB

In dense matrix format:
The command diag produces a diagonal matrix, i.e., if a is a vector
of length n, then A = diag(a) produces

A =

a1 0 . . . 0

0 a2
. . .

...
...

. 0
0 . . . 0 an

 .
Note that a = diag(A) can also be used to return the diagonal of
the matrix A in the vector a.
A tridiagonal matrix T with subdiagonal a, main diagonal b, and
superdiagonal c is given by
T = diag(a,-1) + diag(b,0) + diag(c,1)

fasshauer@iit.edu MATH 350 – Chapter 2 55

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Other ways to create tridiagonal matrices in MATLAB

(cont.)

In sparse matrix format:
An n × n tridiagonal matrix T with subdiagonal a, main diagonal b,
and superdiagonal c is given by
T = spdiags([a,b,c],[-1 0 1],n,n)

spdiags can also be used to extract the diagonals from a sparse
matrix.

In both cases, MATLAB’s built-in backslash operator will solve the
linear system Tx = d efficiently using a direct method.

fasshauer@iit.edu MATH 350 – Chapter 2 56

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Solving a tridiagonal system in MATLAB (see tridisolve.m)

As for general systems Ax = d we use the usual two-phase approach.
Gaussian elimination to convert to upper triangular form:

x = d;
n = length(x);
for j = 1:n-1

mu = a(j)/b(j); % multipliers
b(j+1) = b(j+1) - mu*c(j); % diagonal elements
x(j+1) = x(j+1) - mu*x(j); % rhs

end

Note that the superdiagonal elements are not touched, and that
we did not use any pivoting.
It can be shown that if A is diagonally dominant, i.e., each
diagonal element is greater than the sum of the (absolute values
of the) off-diagonal elements, then pivoting is not needed.

fasshauer@iit.edu MATH 350 – Chapter 2 57

http://math.iit.edu/~fass

Special Matrices Banded Matrices

Solving a tridiagonal system in MATLAB (cont.)

Back substitution:

x(n) = x(n)/b(n);
for j = n-1:-1:1

x(j) = (x(j)-c(j)*x(j+1))/b(j);
end

The code from this and the previous slide is combined in the function
tridisolve from [NCM].

Remark

Recall that standard Gaussian elimination requires O(n3) operations,
and back substitution O(n2). The specialized code tridisolve
requires only O(n) operations (see TridisolveDemo.m).

fasshauer@iit.edu MATH 350 – Chapter 2 58

http://math.iit.edu/~fass

An Application: Google’s Page Rank

A Mathematical Model for the Internet
The following is from Sect. 2.11 of [NCM] (which is based on [Page et al.]).
Start with a connectivity matrix G of zeros and ones such that

gij = 1 if page #j links to page #i .

G is n × n, where — for the entire internet — n is huge, i.e., O(1012)
(see this Google blog).
Example
Consider a tiny web consisting of only n = 6 webpages:

fasshauer@iit.edu MATH 350 – Chapter 2 60

26 Chapter 2. Linear Equations

Then repeat the statement

x = G*x + e*(z*x)

until x settles down to several decimal places.
It is also possible to use an algorithm known as inverse iteration.

A = p*G*D + delta

x = (I - A)\e

x = x/sum(x)

At first glance, this appears to be a very dangerous idea. Because I − A is the-
oretically singular, with exact computation some diagonal element of the upper
triangular factor of I − A should be zero and this computation should fail. But
with roundoff error, the computed matrix I - A is probably not exactly singular.
Even if it is singular, roundoff during Gaussian elimination will most likely pre-
vent any exact zero diagonal elements. We know that Gaussian elimination with
partial pivoting always produces a solution with a small residual, relative to the
computed solution, even if the matrix is badly conditioned. The vector obtained
with the backslash operation, (I - A)\e, usually has very large components. If it
is rescaled by its sum, the residual is scaled by the same factor and becomes very
small. Consequently, the two vectors x and A*x equal each other to within roundoff
error. In this setting, solving the singular system with Gaussian elimination blows
up, but it blows up in exactly the right direction.

alpha

beta

gamma

delta

sigma rho

Figure 2.2. A tiny Web.

Figure 2.2 is the graph for a tiny example, with n = 6 instead of n = 4 · 109.
Pages on the Web are identified by strings known as uniform resource locators,
or URLs. Most URLs begin with http because they use the hypertext transfer
protocol. In Matlab , we can store the URLs as an array of strings in a cell array.
This example involves a 6-by-1 cell array.

G =

0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://math.iit.edu/~fass

An Application: Google’s Page Rank

A Mathematical Model for the Internet (cont.)

In order to simulate web browsing, we use as a mathematical model a
random walk or Markov chain with transition matrix A such that

aij =

{pgij
cj

+ δ, cj 6= 0

1/n, cj = 0

where aij denotes the probability of someone going to page #i when
they’re visiting page #j , and

p is the probability that an existing link is followed (typical value
p = 0.85). Then 1− p is the probability that a random page is
visited instead.
cj =

∑n
j=1 gij , the column sums of G (called the out-degree of

page #j , i.e., how many pages the j-th page links to).
δ = (1− p)/n is the (tiny) probability of going to a particular
random page.

fasshauer@iit.edu MATH 350 – Chapter 2 61

http://math.iit.edu/~fass

An Application: Google’s Page Rank

A Mathematical Model for the Internet (cont.)

Example

A=

0.0250 0.0250 0.0250 0.8750 0.1667 0.8750
0.4500 0.0250 0.0250 0.0250 0.1667 0.0250
0.0250 0.4500 0.0250 0.0250 0.1667 0.0250
0.0250 0.4500 0.3083 0.0250 0.1667 0.0250
0.0250 0.0250 0.3083 0.0250 0.1667 0.0250
0.4500 0.0250 0.3083 0.0250 0.1667 0.0250

 , λ=

1.0000
−0.5867

−0.1341 + 0.3882i
−0.1341− 0.3882i

0.1465
0.0000

All our transition matrices have
positive entries, i.e., aij > 0 for all i , j ,
column sums equal to one, i.e.,

∑n
i=1 aij = 1 for all j ,

their largest eigenvalue equal to one, i.e., λ1 = 1.
For such matrices the Perron-Frobenius theorem ensures that

Ax = x ⇐⇒ (A− I)x = 0

has a unique solution x such that
∑n

i=1 xi = 1. The vector x is called
the state vector of A. It is also Google’s page rank vector.

fasshauer@iit.edu MATH 350 – Chapter 2 62

http://math.iit.edu/~fass

An Application: Google’s Page Rank

A Mathematical Model for the Internet (cont.)

In linear algebra jargon we are trying to find the eigenvector x
associated with the maximum eigenvalue λ1 = 1.
The simplest algorithm for doing this (and for huge matrices, such as
the Google matrix, the only feasible method) is:

Power iteration

Initialize x (0) with arbitrary nonzero vector (e.g., x (0) = [1
n , . . . ,

1
n])

for k = 1,2, . . .
x (k) = Ax (k−1)

end

Run the MATLAB script TinyWeb.m to see the example of this section
worked through.
The [NCM] program surfer can be used to compute page ranks
starting at any URL. Note that this program is a bit buggy and may
even crash MATLAB.

fasshauer@iit.edu MATH 350 – Chapter 2 63

http://math.iit.edu/~fass

Appendix References

References I

J. W. Demmel.
Applied Numerical Linear Algebra.
SIAM, Philiadelphia, 1997.

G. H. Golub and C. Van Loan.
Matrix Computations.
Johns Hopkins University Press (3rd ed.), Baltimore, 1996.

C. D. Meyer.
Matrix Analysis and Applied Linear Algebra .
SIAM, Philadelphia, 2000.
Also http://www.matrixanalysis.com/.

C. Moler.
Numerical Computing with MATLAB.
SIAM, Philadelphia, 2004.
Also http://www.mathworks.com/moler/.

fasshauer@iit.edu MATH 350 – Chapter 2 64

http://www.matrixanalysis.com/
http://www.mathworks.com/moler/
http://math.iit.edu/~fass

Appendix References

References II

G. Strang.
Introduction to Linear Algebra.
Wellesley-Cambridge Press (3rd ed.), Wellesley, MA, 2003.

G. Strang.
Linear Algebra and Its Applications.
Brooks Cole (4th ed.), 2005.

L. N. Trefethen and D. Bau, III.
Numerical Linear Algebra.
SIAM, Philadelphia, 1997.

L. Page, S. Brin, R. Motwani, and T. Winograd.
The PageRank Citation Ranking: Bringing Order to the Web.
http://ilpubs.stanford.edu:8090/422/

M. du Sautoy.
The Story of Maths — BBC The Genius of the East.
click here

fasshauer@iit.edu MATH 350 – Chapter 2 65

http://ilpubs.stanford.edu:8090/422/
http://www.youtube.com/watch?v=guPNcllsQWM
http://math.iit.edu/~fass

Appendix References

References III

G. Strang.
Video lectures of Gilbert Strang teaching MIT’s Linear Algebra 18.06.
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/index.htm

fasshauer@iit.edu MATH 350 – Chapter 2 66

http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/index.htm
http://math.iit.edu/~fass

	Applications, Motivation and Background Information
	Applications
	Representation of Linear Systems
	Avoid Inverses
	Matrix Division in Matlab
	A Simple Example

	Gaussian Elimination = LU Decomposition
	Forward and Back Substitution in Matlab
	Forward Substitution
	Back Substitution

	Partial Pivoting
	Matlab Implementation of LU-Decomposition
	The Program lutx.m from NCM
	The Program bslashtx.m from NCM

	Roundoff Error and the Condition Number of a Matrix
	Roundoff Error
	The Condition Number of a Matrix

	Special Matrices
	Sparse Matrices
	Banded Matrices

	An Application: Google's Page Rank
	Appendix

