
MATH 350: Introduction to Computational
Mathematics

Chapter I: Mathematical Modeling, Taylor Series, Floating-Point
Numbers, and MATLAB

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Spring 2011

fasshauer@iit.edu MATH 350 – Chapter 1 1

http://math.iit.edu/~fass

Outline

1 Introduction

2 Mathematical Modeling

3 Taylor Series

4 Floating-Point Numbers

5 MATLAB

fasshauer@iit.edu MATH 350 – Chapter 1 2

http://math.iit.edu/~fass

Introduction

What is “computational mathematics”?

Possible answer:

Definition
“Computational mathematics is concerned with the study of algorithms
(or numerical methods) for the solution of computational problems in
science and engineering.”

Other names: numerical analysis or scientific computing

Desirable properties of algorithms:
accuracy
efficiency (speed and memory use)
reliability/stability

fasshauer@iit.edu MATH 350 – Chapter 1 4

http://math.iit.edu/~fass

Mathematical Modeling General Situation

Physical problem −→ mathematical model −→ approximate solution of
problem (analytic or numeric)

Example

Growth of bacteria is often modeled using dP
dt = kP. The analytic

solution is P(t) = P0ekt . We can also solve the DE numerically (see
later).

Why “approximate”?
model usually idealized/simplified (e.g., infinite resources above;
relativity theory applies to large scale problems, quantum
mechanics to small scales→ want unified theory (string theory?))
modeling errors possible (e.g., different drag forces below)
data obtained from physical problem could be inaccurate
(measurement errors)
possible roundoff errors in numerical solutions
numerical algorithms can contain truncation errors
programming errors

fasshauer@iit.edu MATH 350 – Chapter 1 6

http://math.iit.edu/~fass

Mathematical Modeling Example 1: Skydiving

Physical Problem

fasshauer@iit.edu MATH 350 – Chapter 1 7

A skydiver jumps out of an airplane (from sufficiently high altitude).
What is his terminal velocity? (picture below taken from [Prof. Kallend’s website])

http://math.iit.edu/~fass

Mathematical Modeling Example 1: Skydiving

Mathematical Model

To get a handle on the velocity we use Newton’s Second Law of
Motion, F = ma. This implies that the acceleration dv

dt = a = F
m .

A very crude model would be to consider only the gravitational force
Fg = mg, i.e., dv

dt =
Fg
m = mg

m = g.
But then

v(t) = v0 + gt ,

and since we know about the concept of terminal velocity this cannot
work.
A refined model also includes a drag force, Fd = −cv , due to air
resistance. Here c is the drag coefficient (measured in kg/s), and v is
the velocity.

This leads to the first model we will use:

dv
dt

(t) =
Fg + Fd(t)

m
= g − c

m
v(t). (1)

fasshauer@iit.edu MATH 350 – Chapter 1 8

http://math.iit.edu/~fass

Mathematical Modeling Example 1: Skydiving

Approximate Solutions

The ODE
dv
dt

(t) = g − c
m

v(t)

is linear first-order (also separable) and has the analytical solution
(assuming v(0) = v0 = 0)

v(t) =
gm
c

(
1− e−(c/m)t

)
. (2)

Note: Terminal velocity is obtained by taking t →∞, so vT = gm
c .

The simplest method for obtaining a numerical solution of any
first-order ODE y ′(t) = f (t , y) is Euler’s method (approximate
y ′(t) ≈ y(t+h)−y(t)

h , where h is some stepsize for the time step):

y ′(t) = f (t , y) −→ y(t + h) ≈ y(t) + hf (t , y)

fasshauer@iit.edu MATH 350 – Chapter 1 9

http://math.iit.edu/~fass

Mathematical Modeling Example 1: Skydiving

Euler’s Method

For our problem the general Euler formulation results in

v ′(t) = g − c
m

v(t)︸ ︷︷ ︸
=f (t ,v)

−→ v(t + h) ≈ v(t) + h
(

g − c
m

v(t)
)
.

In algorithmic form we have

vn+1 = vn + h
(

g − c
m

vn

)
, n = 0,1,2, . . . ,

where h is the stepsize, vn = v(tn) with tn = nh, and we assume
v0 = 0.

See MATLAB example SkydiveDemo.m

fasshauer@iit.edu MATH 350 – Chapter 1 10

http://math.iit.edu/~fass

Mathematical Modeling Example 2: Skydiving Revisited

Improved Mathematical Model
The dependence of the drag force due to air resistance is actually
proportional to the square of the velocity, so Fd = −c̃v2. Here c̃ is now
a different drag coefficient (measured in kg/m).

This leads to the second and improved model we will use:

dv
dt

(t) =
Fg + Fd(t)

m
= g − c̃

m
v2(t), v(0) = v0 = 0. (3)

This ODE is nonlinear first-order (but still separable). Its
analytical solution is (since

∫ dx
a2−x2 = 1

a tanh−1(x
a) or 1

2a ln
∣∣∣ x+a

x−a

∣∣∣,
depending on which table/program you consult)

v(t) =
√

gm
c̃

tanh

(√
gc̃
m

t

)
=

√
gm
c̃

e2
√

gc̃
m t − 1

e2
√

gc̃
m t + 1

. (4)

The terminal velocity is again obtained for t →∞, so vT =
√

gm
c̃ .

fasshauer@iit.edu MATH 350 – Chapter 1 11

http://math.iit.edu/~fass

Mathematical Modeling Example 2: Skydiving Revisited

Improved Mathematical Model (cont.)

A corresponding numerical solution via Euler’s method is given in
algorithmic form as

vn+1 = vn + h
(

g − c̃
m
(vn)

2
)
, n = 0,1,2, . . . ,

where h is the stepsize, and vn = v(tn) with v0 = 0 as before.

See the MATLAB example Skydive2Demo.m

Remark
Note how simple the change in Euler’s method is (just square the
v-term in Skydive.m), and compare this to the extra effort that is
needed to solve the nonlinear ODE analytically.

fasshauer@iit.edu MATH 350 – Chapter 1 12

http://math.iit.edu/~fass

Mathematical Modeling Example 3: Predator-Prey Problems

Physical Problem

fasshauer@iit.edu MATH 350 – Chapter 1 13

According to records of the Hudson Bay Company, snowshoe hares
and Canadian lynx populations have fluctuated as in the figure below
(see also [Marty ’95, Zhang et al. ’07] according to which this situation is not a predator-prey problem)

http://math.iit.edu/~fass

Mathematical Modeling Example 3: Predator-Prey Problems

Mathematical Model

fasshauer@iit.edu MATH 350 – Chapter 1 14

We treat lynx as predators and hares as prey and model their
dependence by a Lotka-Volterra system

dH(t)
dt

= aH(t)− bH(t)L(t)
(5)

dL(t)
dt

= −cL(t) + dH(t)L(t)

Here t denotes time, H population of hares, L population of lynx,
a = 0.5 denotes birth rate of hares
b = 0.02 denotes death rate of hares (depends on interaction with
lynx “how good are lynx at killing hares”)
c = 0.4 denotes death rate of lynx
d = 0.004 denotes birth rate of lynx (depends on interaction with
hares “how well do hares feed lynx”)

http://math.iit.edu/~fass

Mathematical Modeling Example 3: Predator-Prey Problems

Approximate Solution

Note that here an analytical solution is not available
The only way to solve these coupled nonlinear ODEs is via a
numerical method

Again, the simplest numerical method for first-order IVPs is Euler’s
method. Here

dH(t)
dt

= aH(t)− bH(t)L(t) → Hn+1 = Hn + h (aHn − bHnLn)

dL(t)
dt

= −cL(t) + dH(t)L(t) → Ln+1 = Ln + h (−cLn + dHnLn)

with H0 and L0 the initial populations.

This is now a system of ODEs, but the MATLAB code is the same (see
LynxHareDemo.m)

fasshauer@iit.edu MATH 350 – Chapter 1 15

http://math.iit.edu/~fass

Mathematical Modeling Example 4: Projectile Motion

Projectile Motion

This example is discussed at
http://blog.wolfram.com/2010/09/27/do-computers-dumb-down-math-education/

Load matheducation.nb into Mathematica and play with it!
The TED talk mentioned in the document is here:
http://www.ted.com/talks/lang/eng/conrad_wolfram_teaching_kids_real_math_with_computers.html

From YouTube
fasshauer@iit.edu MATH 350 – Chapter 1 16

GustavGun.wmv
Media File (video/x-ms-wmv)

http://blog.wolfram.com/2010/09/27/do-computers-dumb-down-math-education/
http://www.ted.com/talks/lang/eng/conrad_wolfram_teaching_kids_real_math_with_computers.html
http://www.youtube.com/watch?v=3oLC9XtnVJI
http://math.iit.edu/~fass

Mathematical Modeling Summary

Modeling Summary

There are many other kinds of mathematical modeling situations such
as

data fitting (e.g., find the best approximation – from a certain
linear/nonlinear function class – to given measurement data)
parameter estimation (e.g., find the best parameters for one of the
models used earlier – drag coefficient, birth/death rate, etc.)
statistical/probabilistic modeling (e.g., non-deterministic models in
finance or weather prediction)
discrete modeling (e.g., determining the best location of a fire
department or hospital)
geometric modeling (e.g., used for CAD systems)
asymptotic modeling (focus on extreme or limiting cases, can
usually be done analytically)

An entertaining overview of the field of mathematical modeling is
provided by Charlie’s activities on the TV show NUMB3RS.

fasshauer@iit.edu MATH 350 – Chapter 1 17

http://math.iit.edu/~fass

Mathematical Modeling Summary

Modeling Summary (cont.)

Remark
Even if an analytical solution is available for a (simple) mathematical
model, perhaps a numerical method can be used to solve a more
realistic (and more complicated) model.

For example, the skydiving model could be further improved by
including a gravitational “constant” g that depends on the altitude x
according to Newton’s inverse square law of gravitational attraction

g(x) = g(0)
R2

(R + x)2 ,

where R ≈ 6.37× 106(m) denotes the earth’s radius, and
g(0) = 9.81(m/s2) denotes the values of the gravitational constant at
the earth’s surface (see Chapter 7).

fasshauer@iit.edu MATH 350 – Chapter 1 18

http://math.iit.edu/~fass

Taylor Series Introduction

Why do we need to approximate functions?

Since many “simple” functions are difficult to evaluate without a
calculator, certain approximation methods were developed early on to
aid in this task.
One of the simplest (and most useful) is approximation by Taylor
polynomials.
The central idea is to match a given function locally by some
(low-degree) polynomial, and then evaluate this polynomial instead.

Example

Match f (x) =
√

x at x0 = 1 by a quadratic polynomial, i.e., find
constants a0,a1,a2 such that

p2(x) = a0 + a1x + a2x2 ≈ f (x) (6)

for values of x near x0 = 1. Return

fasshauer@iit.edu MATH 350 – Chapter 1 20

http://math.iit.edu/~fass

Taylor Series Introduction

Solution

We will determine the coefficients a0,a1,a2 by matching derivatives of
f at x0 = 1, i.e., we will enforce (3 conditions for 3 coefficients)

p2(1) = f (1) = 1

p′2(1) = f ′(1) =
1
2

p′′2(1) = f ′′(1) = −1
4

since we know f ′(x) = 1
2
√

x , f ′′(x) = − 1
4x3/2 .

In fact, in many cases we will not actually know the functions f , f ′, f ′′,
etc., but only their values at the specified point.
Note that this is not the most efficient way to obtain the Taylor
approximation (but it illustrates where it comes from).

fasshauer@iit.edu MATH 350 – Chapter 1 21

http://math.iit.edu/~fass

Taylor Series Introduction

Since our assumption (6) implies

p′2(x) = a1 + 2a2x ,
p′′2(x) = 2a2

we obtain a system of three linear equations in the three unknowns
a0,a1 and a2:

p2(1) = a0 + a1 + a2 = 1

p′2(1) = a1 + 2a2 =
1
2

p′′2(1) = 2a2 = −1
4
.

Solving this triangular system we get a2 = −1
8 , a1 = 3

4 , and a0 = 3
8 so

that
p2(x) =

3
8
+

3
4

x − 1
8

x2.

fasshauer@iit.edu MATH 350 – Chapter 1 22

http://math.iit.edu/~fass

Taylor Series Introduction

A more convenient representation of this polynomial is

p2(x) = 1 +
1
2
(x − 1)− 1

8
(x − 1)2

since this corresponds to

p2(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2
(x − 1)2

and shows how we use our “data” (the value of f and its derivatives at
x0 = 1).

fasshauer@iit.edu MATH 350 – Chapter 1 23

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Taylor Polynomials

In general, we can use Taylor’s formula to obtain an n-th degree
polynomial which matches the first n derivatives of f at some number
x0:

f (x) ≈ pn(x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 +

f ′′′(x0)

6
(x − x0)

3 + . . .+
f (n)(x0)

n!
(x − x0)

n

=
n∑

k=0

f (k)(x0)

k !
(x − x0)

k (7)

The polynomial in (7) is called the n-th degree Taylor polynomial for f
at x0.

fasshauer@iit.edu MATH 350 – Chapter 1 24

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Example

Let f (x) = ex and find pn(x) for x0 = 0.

Solution

Since f (k)(x) = ex , k = 0,1,2, . . . ,n, we get

pn(x) =
n∑

k=0

f (k)(x0)

k !
(x − x0)

k

=
n∑

k=0

e0

k !
(x − 0)k

=
n∑

k=0

xk

k !

≈ ex = f (x).

fasshauer@iit.edu MATH 350 – Chapter 1 25

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

What is the error when approximating f by pn?

Theorem (Taylor’s Theorem)
Assume f is n + 1 times continuously differentiable on an interval I
containing the point x0. Then there exists a number ξ between x and
x0 such that

f (x) = pn(x) +
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1︸ ︷︷ ︸
=En+1(x)

.

En+1(x) is called the pointwise error at x or remainder at x.

The problem is that ξ is somewhere between x and x0, but we don’t
know exactly where. Therefore we may obtain estimates for the error
by examining certain “worst cases” of En+1(x).

fasshauer@iit.edu MATH 350 – Chapter 1 26

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

How to use Taylor’s theorem?

Example

Let f (x) = ex and x0 = 0. How accurate is pn(
1
2)? More precisely, how

large should n be so that the error En+1(
1
2) =

√
e− pn(

1
2) < 10−4?

Solution
From Taylor’s theorem we have

En+1(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1

with ξ somewhere between x and x0, i.e., ξ ∈ [0, 1
2].

We also know f (n+1)(x) = ex for all x . Thus

En+1

(
1
2

)
=

eξ

(n + 1)!

(
1
2
− 0
)n+1

=
eξ

2n+1(n + 1)!
.

fasshauer@iit.edu MATH 350 – Chapter 1 27

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Solution (cont.)

We concluded above that 0 ≤ ξ ≤ 1
2 , so we get (since the exponential

function is increasing)

1
2n+1(n + 1)!

≤ En+1(
1
2
) =

eξ

2n+1(n + 1)!
≤ e1/2

2n+1(n + 1)!
.

The whole point of the exercise is to approximate the value of√
e = e1/2, so we need to use a known upper bound above.

Since we know that 2 < e < 3, we can safely estimate

e1/2

2n+1(n + 1)!
<

2
2n+1(n + 1)!

=
1

2n(n + 1)!

fasshauer@iit.edu MATH 350 – Chapter 1 28

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Solution (cont.)

Therefore, to ensure En+1(
1
2) < 10−4 we want to pick n such that

e1/2

2n+1(n + 1)!
<

1
2n(n + 1)!

!
< 10−4 =⇒ 104 !

< 2n(n + 1)!.

This implies n = 5 (since 245! = 1920 and 256! = 23040).

fasshauer@iit.edu MATH 350 – Chapter 1 29

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Taylor Series
A Taylor series is obtained by taking the degree of the Taylor
polynomial to infinity:

f (x) =
∞∑

k=0

f (k)(x0)

k !
(x − x0)

k .

Of course, the equality holds only if the Taylor remainder En+1(x) goes
to zero as n→∞, i.e.,

lim
t→∞

En+1(x) = 0.

Note that the remainder depends on the point x of evaluation, and that
in many cases the Taylor series will converge only for certain values of
x near the point x0 (within a ball/interval whose radius is called the
radius of convergence). See the Maple worksheet Taylor.mw.

fasshauer@iit.edu MATH 350 – Chapter 1 30

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

Alternate formulation of Taylor’s theorem
For our purposes it will often be better to use Taylor’s theorem in the
following form:

Theorem
Assume f is n + 1 times continuously differentiable on an interval I
containing both x0 and x0 + h for some (small) number h. Then there
exists a number ξ somewhere between x0 and x0 + h such that

f (x0 + h) =
n∑

k=0

f (k)(x0)

k !
hk +

f (n+1)(ξ)

(n + 1)!
hn+1

Note that we get this formulation from the previous one by replacing x
by x0 + h so that x − x0 = h.

fasshauer@iit.edu MATH 350 – Chapter 1 31

http://math.iit.edu/~fass

Taylor Series Taylor’s Theorem

In this new representation we can say

En+1(x0) = O(hn+1), as h→ 0,

which means |En+1(x0)| ≤ C|h|n+1 for some constant C.

Remark
From the alternate form of Taylor’s theorem we can get the important
estimates

f (x + h) = f (x) +O(h) (8)
f (x + h) = f (x) + f ′(x)h +O(h2). (9)

Estimate (9) implies

f ′(x) =
f (x + h)− f (x)

h
+O(h),

which plays a crucial role in our understanding of many numerical
methods (e.g., Euler’s method).

fasshauer@iit.edu MATH 350 – Chapter 1 32

http://math.iit.edu/~fass

Taylor Series Error Estimates for Alternating Series

Alternating series

Remark
The alternating series test from calculus may become useful if we need
to estimate the error for a series whose terms have alternating signs.

Consider
∞∑

k=1

(−1)kak with ak ≥ 0. If the sequence {ak} is decreasing

and lim
k→∞

ak = 0, then the series converges. Moreover,

En+1 =

∣∣∣∣∣
∞∑

k=1

(−1)kak︸ ︷︷ ︸
=S

−
n∑

k=1

(−1)kak︸ ︷︷ ︸
=Sn

∣∣∣∣∣ ≤ an+1,

i.e., the truncation error is bounded by the next (unused) term.

fasshauer@iit.edu MATH 350 – Chapter 1 33

http://math.iit.edu/~fass

Floating-Point Numbers Introduction

Most computer programming languages (such as C/C++/C#, Java,
Fortran, or MATLAB) use floating-point arithmetic. Even though we
usually don’t have to worry much about this in everyday computing, it
is good to have a basic understanding of floating-point numbers for
those rare occasions when something unexpected happens.

Here is what might happen if we don’t understand what we’re doing.

First, we need to realize that the set of floating-point numbers is
discrete:

there are only finitely many of them,
and they possess only finite precision.

Most technical computing environments (including MATLAB) use the
IEEE standard for floating-point arithmetic. In particular, MATLAB uses
the IEEE double-precision format1 which uses a word length of 64 bits
to represent a number (see also the details in Chapter 1.7 of [NCM]).

1and since MATLAB 7 also single-precision
fasshauer@iit.edu MATH 350 – Chapter 1 35

http://www.youtube.com/watch?v=kYUrqdUyEpI
http://math.iit.edu/~fass

Floating-Point Numbers Representation of Floating-Point Numbers

Normalized Floating-Point Numbers

Numbers are represented as

x = ±(1 + f) · 2e,

where 0 ≤ f < 1 is the fraction or mantissa, and the exponent
−1022 ≤ e ≤ 1023 is an integer.

Of the 64 bits reserved to store floating-point numbers in the IEEE
standard, f uses 52, e uses 11, and one bit is used to store the sign
(positive or negative).

Finite f implies finite precision (i.e., discrete spacing of floating
point numbers),
finite e implies finite range (there is a minimum and maximum
representable number).

fasshauer@iit.edu MATH 350 – Chapter 1 36

http://math.iit.edu/~fass

Floating-Point Numbers Representation of Floating-Point Numbers

The IEEE Standard

The machine epsilon eps represents the distance from 1 to the next
larger floating-point number and comes out to be 2−52 in the IEEE
standard.
In the IEEE double-precision format we have

binary decimal
eps 2−52 2.2204 · 10−16

realmin 2−1022 2.2251 · 10−308

realmax (2− eps) · 21023 1.7977 · 10308

The machine epsilon defines the roundoff level, i.e., when following the
IEEE standard, numbers can generally be represented with about 16
accurate decimal digits.
Exceptions: Numbers larger than realmax will cause overflow, while
those smaller than realmin will lead to underflow. The number zero
is also treated as an exception.

fasshauer@iit.edu MATH 350 – Chapter 1 37

http://math.iit.edu/~fass

Floating-Point Numbers Representation of Floating-Point Numbers

Example
Assume we have a computer that provides only 4 bits to represent
floating-point numbers (1 for sign, 1 for fraction, 2 for exponent).
List all floating-point numbers that can be represented in this computer.

Solution

t = 1 bit for f : {0,1} normalize
=⇒ f = {0,1}/2t = {0,1/2}

2 bits for e: {00,01,10,11}2 = {0,1,2,3}10
center
=⇒ e = {−2,−1,0,1}

So possible numbers, x = ±(1 + f) · 2e, are:

±(1 + 0) · 2−2 = ±1/4 ±(1 + 1/2) · 2−2 = ±3/8
±(1 + 0) · 2−1 = ±1/2 ±(1 + 1/2) · 2−1 = ±3/4
±(1 + 0) · 20 = ±1 ±(1 + 1/2) · 20 = ±3/2
±(1 + 0) · 21 = ±2 ±(1 + 1/2) · 21 = ±3

Note the “hole around zero”.
floatgui with t = 1, emin = −2, emax = 1

fasshauer@iit.edu MATH 350 – Chapter 1 38

http://math.iit.edu/~fass

Floating-Point Numbers Roundoff Errors

A (perhaps surprising) weakness of the binary (or hexadecimal)
computer representation of numbers is the representation of the
decimal number 1/10.

In fact we have,

1
10

=
1
24 +

1
25 +

0
26 +

0
27 +

1
28 +

1
29 +

0
210 +

0
211 +

1
212 + . . .

=
1
24

(
1 +

1
2
+

0
22 +

0
23 +

1
24 +

1
25 +

0
26 +

0
27 +

1
28 + . . .

)
=

1
16

(
1 +

9
16

+
9

162 +
9

163 +
9

164 + . . .

)

Thus, the decimal number 1/10 has to be truncated on a digital
computer. This leads to roundoff error.

See “disasters due to bad numerical computing”.

fasshauer@iit.edu MATH 350 – Chapter 1 39

http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html
http://math.iit.edu/~fass

Floating-Point Numbers Roundoff Errors

Example
Solve the following linear system with MATLAB

17x1 + 5x2 = 22
1.7x1 + 0.5x2 = 2.2.

Solution
Note that the system is singular (since the second equation is just a
multiple of the first), and has infinitely many solutions.
However, MATLAB offers a unique solution (see RoundoffDemo.m).
MATLAB is “tricked” by the fact that the multiplier 1.7/17=1/10, whose
truncation produces numerically independent equations!

The system

x1 + 2x2 = 2
2x1 + 4x2 = 4

causes no such problems (see also RoundoffDemo.m).
fasshauer@iit.edu MATH 350 – Chapter 1 40

http://math.iit.edu/~fass

Floating-Point Numbers Loss of Significant Digits

Example

Evaluate f (x) =
√

x2 + 1− 1 in MATLAB for x = 10−n, n = 0,1, . . . ,5
using both double-precision and single-precision.

Solution
The “exact” answers (obtained in Maple with much higher precision)
are

x
√

x2 + 1 f (x)
1

√
2 = 1.4142135623730950488 0.4142135623730950488

0.1
√

1.01 = 1.0049875621120890270 0.0049875621120890270
0.01

√
1.0001 = 1.0000499987500624961 0.0000499987500624961

0.001
√

1.000001 = 1.0000004999998750001 0.0000004999998750001
0.0001

√
1.00000001 = 1.0000000049999999875 0.0000000049999999875

0.00001
√

1.0000000001 = 1.0000000000500000000 0.0000000000500000000

Use LossOfSignificanceDemo.m.

fasshauer@iit.edu MATH 350 – Chapter 1 41

http://math.iit.edu/~fass

Floating-Point Numbers Loss of Significant Digits

How can we prevent this?

Solution
We rewrite the expression f (x) before we code it:

f (x) =
√

x2 + 1− 1

=
(√

x2 + 1− 1
) √x2 + 1 + 1√

x2 + 1 + 1

=
x2 + 1− 1√
x2 + 1 + 1

=
x2

√
x2 + 1 + 1

Continue LossOfSignificanceDemo.m (can even improve
double-precision this way).

fasshauer@iit.edu MATH 350 – Chapter 1 42

http://math.iit.edu/~fass

MATLAB Introductory Material

MATLAB Guides

Quite a bit of introductory material is posted online at
http://math.iit.edu/∼fass/100.html.

This includes
Getting Started in MATLAB (Some very basic info to get you off the
ground — similar to the following slides)
MATLAB’s built-in help: Video, Demos, or Getting Started
The introductory MATLAB scripts
on the handouts page for this class

A Very Elementary MATLAB Tutorial is available directly from The
MathWorks.

fasshauer@iit.edu MATH 350 – Chapter 1 44

http://math.iit.edu/~fass/100.html
http://math.iit.edu/~fass/MatlabGettingStarted.pdf
http://math.iit.edu/~fass/350_handouts.html
http://www.mathworks.com/academia/student_center/tutorials/intropage.html
http://math.iit.edu/~fass

MATLAB What is MATLAB?

MATLAB is widely used in many areas of applied mathematics and
engineering.
MATLAB stands for MATrix LABoratory and the software uses
vectors and matrices as basic building blocks.
We have to learn to think “the MATLAB way” if we want to take full
advantage.
In addition to its computational engine MATLAB provides a
powerful graphical interface that allows us to produce both 2D and
3D plots.
In addition to its interactive mode, MATLAB is also one of the
easiest programming languages for solving mathematical
problems.
MATLAB’s basic capabilities can be extended by calling functions
defined in additional toolboxes.

fasshauer@iit.edu MATH 350 – Chapter 1 45

http://math.iit.edu/~fass

MATLAB How to Start and Exit MATLAB

All IIT computer labs should have MATLAB installed. You can also
purchase the Student Version for about $100.
Usually we use MATLAB via its windows-based interface, and start
it like any other program.
Important MATLAB windows:

Command window: where you work in interactive mode (at the »
command prompt), or run programs (M-files)
Editor window: where you write your program code, and then save
it to your hard drive (other text editors are also allowed)
Help window: where you can get online help (can also type help or
help <command name> at the command prompt)

Other MATLAB windows:
Command History window
Current Directory window
Workspace window (provides information about all the variables in
use)

fasshauer@iit.edu MATH 350 – Chapter 1 46

http://math.iit.edu/~fass

MATLAB How to Start and Exit MATLAB

Other important things
In an emergency (such as a run-away loop) you can interrupt
MATLAB by typing Ctrl-C (note that sometimes it may take MATLAB

a while to “come back” from heavy calculations).
Once you have finished your work you can exit MATLAB by either
typing quit at the prompt (») in the Command window, by going
to the File→Exit menu, or by closing the Command window in the
usual way.
In addition to the windows-based interface with all its bells and
whistles MATLAB also has a command-line interface that can be
invoked by using additional switches such as matlab
-nodesktop.

fasshauer@iit.edu MATH 350 – Chapter 1 47

http://math.iit.edu/~fass

MATLAB Using the MATLAB Editor

While you can enter individual MATLAB commands interactively in
the Command window, you will often want to combine a sequence
of commands into a program (also called a script file or function
file).
You need to write such programs in a separate editor (see above).
If the Editor does not open by itself when you start MATLAB you
can invoke it via the File→New→M-File menu (for a new file) or
File→Open menu (for an existing file).
Basic use of the editor is straightforward.
Many advanced features are also available (such as adding
breakpoints to your code for debugging purposes).

fasshauer@iit.edu MATH 350 – Chapter 1 48

http://math.iit.edu/~fass

MATLAB Using the MATLAB Editor

How to save and run a MATLAB program — M-file

While typing your code in the editor, no commands will be performed!
In order to run a program do the following:

In the Editor save your code as an M-file with some filename you
pick. (MATLAB should automatically add the .m extension that is
required for the file to be recognized as a MATLAB program file).
Go to the Command window. Make sure the folder your Command
window is looking at is the same one you saved your program in!
Run the program by entering its name (without the .m extension)
at the command prompt.
If your code contained an error, MATLAB will interrupt execution of
the program and provide you with an error message. You can click
on the error message, and will be taken to the corresponding
place in the code in the Editor.

fasshauer@iit.edu MATH 350 – Chapter 1 49

http://math.iit.edu/~fass

Appendix References

References I

T. A. Driscoll.
Learning MATLAB.
SIAM, Philadelphia, 2009.

D. J. Higham and N. J. Higham.
MATLAB Guide.
SIAM (2nd ed.), Philadelphia, 2005.

C. Moler.
Numerical Computing with MATLAB.
SIAM, Philadelphia, 2004.
Also http://www.mathworks.com/moler/index_ncm.html.

C. Moler.
Experiments with MATLAB.
Free download at http://www.mathworks.com/moler/exm/chapters.html.

S. Marty.
The lynx and the hare.
Canadian Geographic Magazine, Sept./Oct. (1995), 28–37.

fasshauer@iit.edu MATH 350 – Chapter 1 50

http://www.mathworks.com/moler/index_ncm.html
http://www.mathworks.com/moler/exm/chapters.html
http://math.iit.edu/~fass

Appendix References

References II

Z. Zhang, Y. Tao, and Z. Li.
Factors affecting hare-lynx dynamics in the classic time series of the Hudson Bay
Company, Canada.
Climate Research 34 (2007), 83–89.

The MathWorks.
MATLAB 7: Getting Started Guide.
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf.

M. Gockenbach.
Practical Introduction to MATLAB(for Vesrion 5).
http://www.math.mtu.edu/∼msgocken/intro/intro.html.

J. Kallend.
John Kallend’s Skydiving Stuff.
http://www.iit.edu/∼kallend/skydive/.

fasshauer@iit.edu MATH 350 – Chapter 1 51

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf
http://www.math.mtu.edu/~msgocken/intro/intro.html
http://www.iit.edu/~kallend/skydive/
http://math.iit.edu/~fass

	Introduction
	Mathematical Modeling
	General Situation
	Example 1: Skydiving
	Example 2: Skydiving Revisited
	Example 3: Predator-Prey Problems
	Example 4: Projectile Motion
	Summary

	Taylor Series
	Introduction
	Taylor's Theorem
	Error Estimates for Alternating Series

	Floating-Point Numbers
	Introduction
	Representation of Floating-Point Numbers
	Roundoff Errors
	Loss of Significant Digits

	Matlab
	Introductory Material
	What is Matlab?
	How to Start and Exit Matlab
	Using the Matlab Editor

	Appendix

