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Proof

“A proof of a statement in
mathematics is a logically sound
argument that establishes the
truth of the statement.” [Devlin]

“Mathematicians . . . demand a
proof, that is, an argument that
puts a statement beyond all
possible doubt.” [Gowers]
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Proof Why Do We Need Proofs?
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Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:

n = 1: 991 · 1 + 1 = 992,
√

992 = 4
√

62 ≈ 31.496 T
n = 2: 991 · 4 + 1 = 3965,

√
3965 ≈ 62.9682 T

n = 3: 991 · 9 + 1 = 8920,
√

8920 = 2
√

2230 ≈ 94.4458 T
n = 10: 991 · 100 + 1 = 99101,

√
99101 ≈ 314.803 T

n = 537: 991·288369+1 = 285773680,
√

285773680 ≈ 16904.8 T
http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496

T
n = 2: 991 · 4 + 1 = 3965,

√
3965 ≈ 62.9682 T

n = 3: 991 · 9 + 1 = 8920,
√

8920 = 2
√

2230 ≈ 94.4458 T
n = 10: 991 · 100 + 1 = 99101,

√
99101 ≈ 314.803 T

n = 537: 991·288369+1 = 285773680,
√

285773680 ≈ 16904.8 T
http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T

n = 3: 991 · 9 + 1 = 8920,
√

8920 = 2
√

2230 ≈ 94.4458 T
n = 10: 991 · 100 + 1 = 99101,

√
99101 ≈ 314.803 T

n = 537: 991·288369+1 = 285773680,
√

285773680 ≈ 16904.8 T
http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T

n = 537: 991·288369+1 = 285773680,
√

285773680 ≈ 16904.8 T
http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1

Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Example
Consider the following problem attributed to Sierpinski:

991n2 + 1 is not a perfect square.

Is this statement true for all positive integers n?

Try some values:
n = 1: 991 · 1 + 1 = 992,

√
992 = 4

√
62 ≈ 31.496 T

n = 2: 991 · 4 + 1 = 3965,
√

3965 ≈ 62.9682 T
n = 3: 991 · 9 + 1 = 8920,

√
8920 = 2

√
2230 ≈ 94.4458 T

n = 10: 991 · 100 + 1 = 99101,
√

99101 ≈ 314.803 T
n = 537: 991·288369+1 = 285773680,

√
285773680 ≈ 16904.8 T

http://www.wolframalpha.com/input/?i=
Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
Therefore, this statement is obviously true.

fasshauer@iit.edu MATH 100 – ITP 5

http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://www.wolframalpha.com/input/?i=Table[Sqrt[991*n^2%2B1]%2C+{n+%2C1%2C1000}]&cdf=1
http://math.iit.edu/~fass


Proof Why Do We Need Proofs?

Not so!
It takes a looong time to find a counter-example, but for

n = 12055735790331359447442538767

we have

n2 = 14534076544627648799988507624697816 . . .
6471414204258297880289

991n2 + 1 = 14403269855725999960788611056075536 . . .
2973171476419973199366400

√
991n2 + 1 = 379516400906811930638014896080 F

Conclusion
Simply checking (many) examples is not good enough to rigorously
establish the truth of a statement. We need a mathematical proof.
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Direct Proof Modus ponens

Theorem (Exercise 2.5.5(e) in [Devlin])
The product of an even and an odd integer is even.

Proof.
To formalize this we assume m is the even integer and n is the odd
one. Then the statement we want to prove is

(∀m,n ∈ Z) [((m even) ∧ (n odd))⇒ (mn even)] .

We can represent
any even integer as m = 2k , for some integer k and
any odd integer n = 2`+ 1 for some (other) integer `.

Now
mn = (2k)(2`+ 1) = 2(2k`+ k)

and since 2k`+ k is an integera we see that mn = (2× integer) is
even.

aIt doesn’t matter if even or odd.
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Direct Proof Modus tollens

As mentioned earlier, proving a statement φ⇒ ψ directly is difficult.
Use of the contrapositive, (¬ψ)⇒ (¬φ), often helps.

Theorem

For all integers n, if n2 is even then n is even.

Proof.
Here ψ corresponds to “n is even”. So we assume that “n is not even”,
i.e., n is odd.
The theorem is proved if we can show (¬φ), i.e., that n2 is odd.
Any odd number can be represented as n = 2k +1, for some integer k .
Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is also an integer we have shown that n2 is odd, and
we are done.
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i.e., n is odd.
The theorem is proved if we can show

(¬φ), i.e., that n2 is odd.
Any odd number can be represented as n = 2k +1, for some integer k .
Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is also an integer we have shown that n2 is odd, and
we are done.
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Proof by Contradiction

We assume that the conclusion to be proved is false, and argue that
this leads to a contradiction.

“Reductio ad absurdum, which Euclid loved so much, is one
of a mathematician’s finest weapons. It is a far finer gambit
than any chess gambit: a chess player may offer the sacrifice
of a pawn or even a piece, but a mathematician offers the
game.” [Hardy]

Some of the most famous examples of proofs by contradiction are:
The proof that

√
2 is irrational (probably dating back to Aristotle

ca. 350 B.C., see [Devlin, Section 2.5], [Gowers, Chapter 3]).
The proof that there are infinitely many primes (dating back to
Euclid ca. 300 B.C., see below).
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Proof by Contradiction
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Proof by Induction

To prove a statement of the form

(∀n ∈ N)A(n)

1 Initial step: Show that A(1) holds
2 Induction step: Assume that A(n) holds for an arbitrary n and

show that A(n + 1) follows, i.e., show

(∀n ∈ N) [A(n)⇒ A(n + 1)]

3 Combining (1) and (2) we conclude that the statement holds.

This works because of the axioms that define the natural numbers.
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Proof by Induction

Theorem (Exercise 2.5.7(a) in [Devlin], Gauss (9 years old))

For any natural number n, 1+2+3+. . .+n =
n∑

k=1

k =
n(n + 1)

2
.

Proof
We use mathematical induction to prove (∀n ∈ N)A(n), where

A(n) stands for
n∑

k=1

k =
n(n + 1)

2
.

The initial step

A(1) corresponds to
1∑

k=1

k =
1(1 + 1)

2
.

Since both sides of this equality evaluate to one we have ensured that
the initial step holds.
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Proof by Induction

Proof cont.
For the induction step

we assume that A(n) holds for an arbitrary (but
fixed) value of n and try to show that A(n + 1) follows.
The left-hand side of A(n + 1) is

n+1∑
k=1

k = 1 + 2 + 3 + . . .+ n + (n + 1) =
n∑

k=1

k + (n + 1)

A(n) holds
=

n(n + 1)
2

+ (n + 1)

= (n + 1)
(n

2
+ 1
)

= (n + 1)
(

n
2
+

2
2

)
= (n + 1)

n + 2
2

,

but this corresponds to the right-hand side of A(n + 1).
Since both the initial step and the induction step are true, the
statement follows for all n ∈ N.
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Proof by Induction

Gauss actually proved the above theorem directly (see
[Gauss’s Day of Reckoning]).

How would such a direct proof go?
Little Gauss had to solve only the problem for n = 100:

1 + 2 + 3 + . . . + 98 + 99 + 100

100 + 99 + 98 + . . . + 3 + 2 + 1

101 + 101 + 101 + . . . + 101 + 101 + 101

The number 101 is added 100 times, but we used two copies of the
sum we wanted to compute, so

1 + 2 + 3 + . . .+ 98 + 99 + 100 =
1
2

100 · 101.
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Proof by Induction

For general n the argument is analogous:

1 + 2 + 3 + . . . + (n-2) + (n-1) + n

n + (n-1) + (n-2) + . . . + 3 + 2 + 1

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) + (n+1)

and we have

1 + 2 + 3 + . . .+ (n − 2) + (n − 1) + n =
1
2

n(n + 1).

This same problem can already be found (with a very similar solution)
in [Problems to Sharpen the Young] by the English scholar Alcuin of
York written in the 8th century.
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Proof by Induction

Recall our problem from the beginning of the semester, where we
conjectured the following:

Theorem
If the sequence a0,a1,a2, . . . satisfies

am+n + am−n =
1
2
(a2m + a2n) (*)

for all nonnegative integers m and n with m ≥ n and a1 = 1, then
an = n2 for all n ∈ N0.

While we computed a number of special values that might serve as the
initial step of a mathematical induction proof for this problem, such as

a0 = 0, a1 = 1, a2 = 4, a3 = 9, and even a2m = 4am,

ordinary induction does not suffice for this proof.
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a0 = 0, a1 = 1, a2 = 4, a3 = 9, and even a2m = 4am,

ordinary induction does not suffice for this proof.

fasshauer@iit.edu MATH 100 – ITP 16

http://math.iit.edu/~fass


Proof by Induction

Instead we can use strong (or complete) induction. Here the induction
step is:

Assume that for an arbitrary n all of the following statements hold

A(1),A(2), . . . ,A(n)

and show that then A(n + 1) follows.

So – in contrast to ordinary induction – we now take advantage of
complete historical information.

Using the domino analogy, we’re using not only the immediate
predecessor to knock over the nth domino, but we’re allowed to use the
combined force of all of its predecessors.
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Proof by Induction

Proof (of sequence problem).

Let A(n) be the statement that an = n2.
Certainly the initial step A(0) is true.

Induction step: assume that A(k) is true for all k = 0,1, . . . ,m.
We have (using m and n = 1 in (∗), and a2m = 4am and a2 = 4)

am+1 + am−1 =
1
2
(a2m + a2) =

1
2
(4am + 4) = 2am + 2.

Using our assumption that both A(m) and A(m − 1) hold, we get

(am+1 + am−1 = 2am + 2)⇐⇒
(

am+1 + (m − 1)2 = 2m2 + 2
)

or

am+1 = 2m2 + 2− (m2 − 2m + 1) = m2 + 2m + 1 = (m + 1)2,

which corresponds to A(m + 1).
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Proof without Words

1 + 3 + 5 + . . .+ (2n − 1) =
n∑

k=1

(2k − 1) = n2

See also HW problem 2.5.8(b) in [Devlin].
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Proof without Words

a2 + b2 = c2

See also [Gowers, Chapter 3].

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Proof without Words

a2 + b2 = c2

See also [Gowers, Chapter 3].

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Proof without Words

a2 + b2 = c2

See also [Gowers, Chapter 3].

fasshauer@iit.edu MATH 100 – ITP 20

http://math.iit.edu/~fass


Proof without Words
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Proofs “From the Book”

“This one’s from the book.” (Paul Erdős)

Refers to (famous) results with beautiful/elegant proofs.

fasshauer@iit.edu MATH 100 – ITP 22

http://math.iit.edu/~fass


Proofs “From the Book”

Example
The Basel problem, first proved by
Leonhard Euler in 1735:

∞∑
n=1

1
n2 =

π2

6

One way to prove this is via Fourier series
(see MATH 461).

See [Proofs from THE BOOK] for three different proofs.
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Proofs “From the Book”

Theorem (Book IX, Prop. 20 of Euclid’s [Elements])
There are infinitely many primes.

Euclid’s Proof (a proof by contradiction).

Assume there are finitely many primes: {p1, . . . ,pr}
Now consider the number n = p1p2 · · · pr + 1.
According to our assumption, n is not a prime number (it’s obviously
not one of the pi ), so it has prime divisor, say p.
But p is not one of the pi either since otherwise p would not only be a
divisor of n, but also of the product p1p2 · · · pr .
Consequently, p would be a divisor of the difference n−p1p2 · · · pr = 1.
But that is impossible, and so we have a contradiction, which means
that set {p1, . . . ,pr} cannot contain all primes.
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Proofs “From the Book”

The concept of proof is also relevant outside of mathematics.

In [The Elements of a Proposition] the authors analyze some of
Abraham Lincoln’s speeches as they relate to Euclid’s [Elements].

Try this in MATLAB:

load penny.mat
contour(P,15)
colormap(copper)
axis ij square
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Proofs “From the Book”

Summary

You may see some of these proofs again in classes such as
MATH 230 – Introduction to Discrete Math
MATH 410 – Number Theory

Other classes that depend on lots of proofs are
MATH 332 – Elementary Linear Algebra
MATH 400 – Real Analysis
MATH 420 – Geometry
MATH 430/431 – Applied Algebra I/II
MATH 453 – Combinatorics
MATH 454 – Graph Theory
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