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Abstract

Meshfree methods are the topic of recent research in many areas of computa-
tional science and approximation theory. These methods come in various flavors,
most of which can be explained either by what is known in the literature as radial
basis functions (RBFs), or in terms of the moving least squares (MLS) method.
Over the past several years meshfree approximation methods have found their
way into many different application areas ranging from artificial intelligence, com-
puter graphics, image processing and optimization to the numerical solution of all
kinds of (partial) differential equations problems. Applications in computational
nanotechnology are still somewhat rare, but do exist in the literature. In this
chapter we will focus on the mathematical foundation of meshfree methods, and
the discussion of various computational techniques presently available for a suc-
cessful implementation of meshfree methods. At the end of this review we mention
some initial applications of meshfree methods to problems in computational nan-
otechnology, and hope that this introduction will serve as a motivation for others
to apply meshfree methods to many other challenging problems in computational
nanotechnology.

1 Introduction

1.1 History and Outline

Originally, the motivation for two of the most common basic meshfree approximation
methods (radial basis functions and moving least squares methods) came from applica-
tions in geodesy, geophysics, mapping, or meteorology. Later, applications were found
in many areas such as in the numerical solution of PDEs, artificial intelligence, learning
theory, neural networks, signal processing, sampling theory, statistics (kriging), finance,
and optimization. It should be pointed out that (meshfree) local regression methods
have been used (independently) in statistics for more than 100 years (see, e.g., [37] and
references therein).

“Standard” multivariate approximation methods (splines or finite elements) require
an underlying mesh (e.g., a triangulation) for the definition of basis functions or ele-
ments. This is usually rather difficult to accomplish in space dimensions > 2.

The following provides a very brief history of meshfree methods in approximation
theory and lists some of the landmark papers. In the late 1960s D. Shepard [185] sug-
gested the use of what are today known as Shepard functions in an application to surface
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modelling. Another application of meshfree methods, this time in geodesy, was sug-
gested in the early 1970s by Rolland Hardy (see, e.g., [83, 84, 85]). The approaches sug-
gested by Hardy are known as the multiquadric (MQ) and inverse multiquadric (IMQ)
methods. Around the same time Jean Duchon, a mathematician at the Université
Joseph Fourier in Grenoble, France, formulated a variational approach that led to thin
plate splines (TPSs), or more generally polyharmonic splines (see [44, 45, 46, 47]). The
closely related surface splines were studied by Jean Meinguet at Université Catholique
de Louvain in Louvain, Belgium (see [130, 131, 132, 133]), while the idea of Shepard’s
functions was generalized by Peter Lancaster and Kes Šalkauskas of the University of
Calgary, Canada. Their method is now known as the moving least squares method
[108, 109]. A very important paper was the comparison of all scattered data interpola-
tion methods available in the early 1980s by Richard Franke of the Naval Postgraduate
School in Monterey, California. In his comparison [74] he concluded that multiquadrics
and thin plate splines were the best methods available at that time. Franke also con-
jectured that the interpolation matrix that arises in the use of MQs is invertible. This
comparison in favor of MQs and TPSs and the related conjecture is what really jump-
started the research on radial basis functions. The first two major contributions in
this area were on the one hand the unpublished manuscript [123] by Wally Madych
of the University of Connecticut and S. A. Nelson of Iowa State University. Using a
variational approach, they verified (among many other things) Franke’s conjecture and
provided a complete framework for multivariate interpolation. Roughly at the same
time Charles Micchelli (who was at IBM Yorktown Heights) also proved Franke’s con-
jecture. His approach is based on conditionally positive definite functions (see [135]).
Of the hundreds of papers that have appeared since the mid 1980s we would like to
single out only one other paper: the 1995 paper resulting from a Masters thesis by
Holger Wendland of the University of Göttingen in Germany [199]. Wendland was the
first to present a class of compactly supported radial basis functions, and thus able to
provide a simple approach to computationally efficient meshfree radial basis function
methods.

In the following we will quote many of these results in more detail. However,
since this is a review, no proofs are provided. For details the reader is referred to the
original literature or the recent (and thus far only) book on radial basis functions [27]
by Buhmann.

In the remainder of this introductory section we will explain the main concepts
of scattered data interpolation, positive definite functions and radial functions. The
later sections will go into more details. In section 2 we discuss positive definite and
completely monotone functions, while in section 3 we add the idea of polynomial repro-
duction to the interpolation problem. This will lead to conditionally positive definite
functions. The fourth section introduces several different families of compactly sup-
ported radial functions. In section 5 we go over the variational approach and discuss
some of the error bounds available for radial basis approximation. In the same section
we also explain the connection of radial basis function interpolation to the theory of
optimal recovery. This connection reveals that radial basis function interpolation can
be considered an optimal interpolation scheme. Section 6 deals with least squares ap-
proximation (by radial basis functions), while section 7 explains the details of moving
least squares approximation. In section 8 we go over a number of issues related to
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the practical implementation of meshfree methods such as conditioning problems and
preconditioning methods, alternate basis representations, multilevel algorithms, fast
evaluation algorithms, and domain decomposition methods. Finally, in section 9 we
provide an overview of some approaches to solving partial differential equations, and
end the review with a few early contributions of meshfree methods to the computational
nanotechnology literature.

1.2 Motivation: Scattered Data Interpolation

We will use the scattered data fitting problem as our motivation for meshfree methods.
This application is one of the fundamental problems in approximation theory and
data modelling in general. Our desire to have a well-posed problem formulation will
naturally lead to the concepts of positive definite matrices, and strictly positive definite
functions. These functions, in turn, provide a direct entry into meshfree methods.
While (scattered data) interpolation can be applied directly to solve many applications
problems, this approximation method also provides a foundation to many numerical
PDE solvers.

1.2.1 Scattered Data Interpolation.

In many scientific disciplines one faces the following problem. We have a set of data
(measurements, and locations at which these measurements were obtained), and we
want to find a rule which allows us to deduce information about the process we are
studying also at locations different from those at which we obtained our measurements.
Thus, we are trying to find a function which is a “good” fit to the given data. There
are many ways to decide what we mean by “good”, and the only criterion we will
consider now is that we want our approximation (which we will denote by Pf) to
exactly match the given measurements at the corresponding locations. This approach
is called interpolation, and if the locations at which the measurements are taken do not
lie on a uniform or regular grid, then the process is called scattered data interpolation.
More precisely, we are considering the following

Problem 1.1 Given data (xj , yj), j = 1, . . . , N with xj ∈ IRs, yj ∈ IR find a (contin-
uous) function Pf such that Pf(xj) = yj, j = 1, . . . , N .

Here the xj are the measurement locations (or data sites), and the yj are the
corresponding measurements (or data values). We will often assume that these values
are obtained by sampling a data function f at the data sites, i.e., yj = f(xj), j =
1, . . . , N . The fact that we allow xj to lie in s-dimensional space IRs means that the
formulation of Problem 1.1 allows us to cover many different types of problems. If
s = 1 the data could be a series of measurements taken over a certain time period,
thus the “data sites” xj would correspond to certain time instances. For s = 2 we can
think of the data being obtained over a planar region, and so xj corresponds to the two
coordinates in the plane. For instance, we might want to produce a map which shows
the rainfall in the state we live in based on the data collected at weather stations located
throughout the state. For s = 3 we might think of a similar situation in space. One
possibility is that we could be interested in the temperature distribution inside some
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solid body. Higher-dimensional examples might not be that intuitive, but a multitude
of them exist, e.g., in finance, economics or statistics, but also in artificial intelligence
or machine learning.

A convenient and common approach to solving the scattered data problem is to
make the assumption that the function Pf is a linear combination of certain basis
functions Bk, i.e.,

Pf(x) =

N
∑

k=1

ckBk(x), x ∈ IRs . (1)

Solving the interpolation problem under this assumption leads to a system of linear
equations of the form

Ac = y,

where the entries of the interpolation matrix A are given by Ajk = Bk(xj), j, k =
1, . . . , N , c = [c1, . . . , cN ]T , and y = [y1, . . . , yN ]T .

Problem 1.1 will be well-posed, i.e., a solution to the problem will exist and be
unique, if and only if the matrix A is non-singular.

This kind of problem is completely understood in the univariate setting (i.e., s = 1)
where it is well known that one can interpolate to arbitrary data at N distinct data
sites using a polynomial of degree N − 1. For the multivariate setting, however, there
is the following negative result due to Mairhuber and Curtis from 1956 [125]:

Theorem 1.2 If Ω ⊂ IRs, s ≥ 2, contains an interior point, then there exist no Haar
spaces of continuous functions except for one-dimensional ones.

Here, a Haar space is a space of functions that guarantees invertibility of the inter-
polation matrix (Bk(xj))

N
j,k=1. As mentioned above, univariate polynomials of degree

N − 1 form an N -dimensional Haar space for data given at x1, . . . , xN ∈ IR. The
Mairhuber-Curtis Theorem implies that in the multivariate setting we can no longer
expect this to be the case. E.g., it is not possible to perform unique interpolation
with (multivariate) polynomials of degree N to data given at arbitrary locations in IR2.
The Mairhuber-Curtis Theorem tells us that if we want to have a well-posed multivari-
ate scattered data interpolation problem, then the basis needs to depend on the data
locations.

In order to obtain such data dependent approximation spaces we now consider
positive definite matrices and functions.

1.2.2 Positive Definite Matrices and Functions

While a positive definite matrix is a standard concept from linear algebra we provide
its precise definition in order to contrast it with that of a positive definite function
(probably less well-known to the average reader).

Definition 1.3 A real symmetric matrix A is called positive semi-definite if its asso-
ciated quadratic form is non-negative, i.e.,

N
∑

j=1

N
∑

k=1

cjckAjk ≥ 0 (2)
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for c = [c1, . . . , cN ]T ∈ IRN . If the only vector c that turns (2) into an equality is the
zero vector, then A is called positive definite.

An important property of positive definite matrices is that all their eigenvalues are
positive, and therefore a positive definite matrix is non-singular (but certainly not vice
versa).

If we therefore had basis functions Bk in the expansion (1) above which generate a
positive definite interpolation matrix, we would always have a well-posed interpolation
problem. To this end we introduce the concept of a positive definite function from
classical analysis.

Definition 1.4 A real-valued continuous function Φ is positive definite on IRs if and
only if it is even and

N
∑

j=1

N
∑

k=1

cjckΦ(xj − xk) ≥ 0 (3)

for any N pairwise different points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ IRN .
The function Φ is strictly positive definite on IRs if the only vector c that turns (3)
into an equality is the zero vector.

Positive definite functions were first considered in classical analysis early in the
20th century. In the 1920s Mathias [126] seems to have been the first to define and
study positive definite functions. An overview of the development of positive definite
functions up to the mid 1970s can be found in [191]. There seems to have been no
need to study strictly positive functions until Micchelli [135] made the connection be-
tween scattered data interpolation and positive definite functions. Unfortunately, in
the course of history it has turned out that a positive definite function is associated
with a positive semi-definite matrix. It should be pointed out that when reading re-
cent articles (especially in the radial basis function literature) dealing with (strictly)
positive definite functions one has to be aware of the fact that some authors have tried
to “correct” history, and now refer to strictly positive definite functions as positive
definite functions.

Usually, positive definite functions are defined as complex-valued functions, and
complex coefficients c are used. In particular, the celebrated Bochner’s Theorem (see
the next section) provides an exact characterization of complex-valued positive definite
functions. In all practical circumstances, however, we will be concerned with real-valued
functions only.

Example: Fix a point y in IRs. Then the function Φ(x) = ex·y is positive definite on
IRs since the quadratic form in Definition 1.4 becomes

N
∑

j=1

N
∑

k=1

cjckΦ(xj − xk) =
N
∑

j=1

N
∑

k=1

cjcke
(xj−xk)·y

=
N
∑

j=1

cje
xj ·y

N
∑

k=1

cke
xk·y
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=





N
∑

j=1

cje
xj ·y





2

≥ 0.

Definition 1.4 and the discussion preceding it suggest that we should use strictly
positive definite functions as basis functions in (1), i.e., Bk(x) = Φ(x− xk), or

Pf(x) =
N
∑

k=1

ckΦ(x− xk), x ∈ IRs . (4)

The function Pf of (4) will yield an interpolant that is translation invariant, i.e., the
interpolant to translated data is the same as the translated interpolant to the original
data.

Finally, Definition 1.4 can be generalized to the notion of strictly positive definite
kernels of the form Φ(x,y). We will interchangeably make use of (strictly) positive
definite functions and (strictly) positive definite kernels later on.

1.2.3 Radial Functions

In many applications it is desirable to have invariance not only under translation, but
also under rotation and reflection. This leads to positive definite functions which are
also radial. Radial functions have the nice property that they are invariant under all
Euclidean transformations (i.e., translations, rotations, and reflections). This is an
immediate consequence of the fact that Euclidean transformations are characterized
by orthogonal transformation matrices and are therefore norm-invariant. We therefore
define

Definition 1.5 A function Φ : IRs → IR is called radial provided there exists a uni-
variate function ϕ : [0,∞)→ IR such that

Φ(x) = ϕ(r), where r = ‖x‖,

and ‖ · ‖ is some norm on IRs – usually the Euclidean norm.

Definition 1.5 says that for a radial function Φ

‖x1‖ = ‖x2‖ =⇒ Φ(x1) = Φ(x2), x1, x2 ∈ IRd .

However, what makes radial functions most useful for applications is the fact that
the interpolation problem becomes insensitive to the dimension s of the space in which
the data sites lie. Instead of having to deal with a multivariate function Φ (whose
complexity will increase with increasing space dimension s) we can work with the same
univariate function ϕ for all choices of s.

We call the univariate function ϕ a (strictly) positive definite radial function on IRs

if and only if the associated multivariate function Φ is (strictly) positive definite on IRs

in the sense of Definition 1.4 and radial in the sense of Definition 1.5.
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2 Positive Definite and Completely Monotone Functions

Below we will first summarize facts about positive definite functions, and closely related
completely monotone functions. Most of these facts are integral characterizations and
were established in the 1930s by Bochner and Schoenberg. In the second part of this
section we will mention the more recent extensions to strictly positive definite and
strictly completely monotone functions.

Integral characterizations are an essential ingredient in the theoretical analysis of
radial basis functions. Before we get into the details of those integral representations
we summarize some formulas for various integral transforms to be used later.

The Fourier transform conventions we will adhere to are laid out in

Definition 2.1 The Fourier transform of f ∈ L1(IR
s) is given by

f̂(ω) =
1

√

(2π)s

∫

IRs

f(x)e−iω·xdx, ω ∈ IRs, (5)

and its inverse Fourier transform is given by

f̌(x) =
1

√

(2π)s

∫

IRs

f(ω)eix·ωdω, x ∈ IRs .

Remark: This definition of the Fourier transform can be found in Rudin [163]. An-
other, just as common, definition uses

f̂(ω) =

∫

IRs

f(x)e−2πiω·xdx, (6)

and can be found in Stein and Weiss [190].

Similarly, we can define the Fourier transform of a finite (signed) measure µ on IRs

by

µ̂(ω) =
1

√

(2π)s

∫

IRs

e−iω·xdµ(x), ω ∈ IRs .

Since we will be interested in positive definite radial functions, we note that the
Fourier transform of a radial function is again radial. Indeed,

Theorem 2.2 Let Φ ∈ L1(IR
s) be continuous and radial, i.e., Φ(x) = ϕ(‖x‖). Then

its Fourier transform Φ̂ is also radial, i.e., Φ̂(ω) = Fsϕ(‖ω‖) with

Fsϕ(r) =
1√
rs−2

∫ ∞

0
ϕ(t)t

s
2J(s−2)/2(rt)dt,

where J(s−2)/2 is the classical Bessel function of the first kind of order (s− 2)/2.

Remark: The integral transform appearing in Theorem 2.2 is also referred to as a
Bessel transform.

A third integral transform to play an important role in the following is the Laplace
transform. We have
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Definition 2.3 The Laplace transform of a piecewise continuous function f that sat-
isfies |f(t)| ≤Meat for some constants a and M is given by

Lf(s) =

∫ ∞

0
f(t)e−stdt, s > a.

Similarly, the Laplace transform of a Borel measure µ on [0,∞) is given by

Lµ(s) =

∫ ∞

0
e−stdµ(t).

The Laplace transform is continuous at the origin if and only if µ is finite.

2.1 Bochner’s Theorem and (Strictly) Positive Definite Functions

One of the most celebrated results on positive definite functions is their characterization
in terms of Fourier transforms established by Bochner in 1932 [18] (for s = 1) and 1933
[19] (for general s) .

Theorem 2.4 (Bochner’s Theorem) A (complex-valued) function Φ ∈ C(IRs) is pos-
itive definite on IRs if and only if it is the Fourier transform of a finite non-negative
Borel measure µ on IRs, i.e.,

Φ(x) = µ̂(x) =
1

√

(2π)s

∫

IRs

e−ix·ydµ(y), x ∈ IRs .

In order to accomplish our goal of guaranteeing a well-posed interpolation problem,
we have to extend (if possible) Bochner’s characterization to strictly positive definite
functions.

A sufficient condition for a function to be strictly positive definite on IRs is

Theorem 2.5 Let µ be a non-negative finite Borel measure on IRs whose carrier is
not a set of Lebesgue measure zero. Then the Fourier transform of µ is strictly positive
definite on IRs.

Here the carrier of a (non-negative) Borel measure defined on some topological
space X is given by

X \
⋃

{O : O is open and µ(O) = 0}.

The following corollary gives us a way to construct strictly positive definite func-
tions.

Corollary 2.6 Let f be a continuous non-negative function in L1(IR
s) which is not

identically zero. Then the Fourier transform of f is strictly positive definite on IRs.
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Example: The Gaussian
Φ(x) = e−α‖x‖2

, α > 0, (7)

is strictly positive definite on IRs for any s. This is essentially due to the fact that
the Fourier transform of a Gaussian is again a Gaussian. In particular, for α = 1

2 we

have Φ̂ = Φ which can be verified by direct calculation. An easier argument (using
completely monotone functions) will become available shortly.

Finally, a criterion to check whether a given function is strictly positive definite is
given in [205].

Theorem 2.7 Let Φ be a continuous function in L1(IR
s). Φ is strictly positive definite

if and only if Φ is bounded and its Fourier transform is non-negative and not identically
equal to zero.

Remark: Work toward an analog of Bochner’s Theorem, i.e., an complete integral
characterization for functions which are strictly positive definite on IRs, is given in [31]
for s = 1.

2.2 Positive Definite Radial Functions

We now turn our attention to positive definite radial functions. Theorem 2.2 can be
used to prove the following characterization due to Schoenberg (see [181], p.816).

Theorem 2.8 A continuous function ϕ : [0,∞)→ IR is positive definite and radial on
IRs if and only if it is the Bessel transform of a finite non-negative Borel measure µ on
[0,∞), i.e.,

ϕ(r) =

∫ ∞

0
Ωs(rt)dµ(t),

where

Ωs(r) =

{

cos r for s = 1,

Γ
(

s
2

) (

2
r

)(s−2)/2
J(s−2)/2(r) for s ≥ 2,

and J(s−2)/2 is the classical Bessel function of the first kind of order (s− 2)/2.

Since any function which is positive definite and radial on IRs1 is also positive
definite and radial on IRs2 as long as s2 ≤ s1, those functions which are positive definite
and radial on IRs for all s are of particular interest. This latter class of functions
was also characterized by Schoenberg ([181], pp. 817–821.). We saw above that the
Gaussians provide an example of such a function.

Theorem 2.9 A continuous function ϕ : [0,∞)→ IR is positive definite and radial on
IRs for all s if and only if it is of the form

ϕ(r) =

∫ ∞

0
e−r2t2dµ(t),

where µ is a finite non-negative Borel measure on [0,∞).
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We end this section with examples of functions that are strictly positive definite
and radial on IRs with restrictions on the space dimension s. Moreover, the following
functions differ from the previous ones in that they have compact support.
Examples:

1. The truncated power function

ϕ`(r) = (1− r)`
+ (8)

is strictly positive definite and radial on IRs provided ` satisfies ` ≥ b s
2c+ 1. For

details see [205]. Here we have used the cutoff function (·)+ which is defined by

(x)+ =

{

x, for x ≥ 0,

0, for x < 0.

2. Let f ∈ C[0,∞) be non-negative and not identically equal to zero, and define the
function ϕ by

ϕ(r) =

∫ ∞

0
(1− rt)k−1

+ f(t)dt. (9)

Then ϕ is strictly positive definite and radial on IRs provided k ≥ b s
2c+ 2. This

can been verified by considering the quadratic form

N
∑

j=1

N
∑

k=1

cjckϕ(‖xj − xk‖) =

∫ ∞

0

N
∑

j=1

N
∑

k=1

cjckϕk−1(t‖xj − xk‖)f(t)dt

which is non-negative since ϕk−1 is strictly positive definite by the first example,
and f is non-negative. Since f is also assumed to be not identically equal to zero,
the only way for the quadratic form to equal zero is if c = 0.
Note that (9) amounts to another integral transform of f with the compactly
supported truncated power function as integration kernel.

An interesting consequence of the Schoenberg characterization of positive definite
radial functions on IRs for all s is that there are no compactly supported univariate
continuous functions that are positive definite and radial on IRs for all s.

2.3 Completely Monotone Functions

We now introduce a class of functions which is very closely related to positive definite
radial functions and leads to a simple characterization of such functions.

Definition 2.10 A function ϕ : [0,∞)→ IR which is in C[0,∞)∩C∞(0,∞) and which
satisfies

(−1)`ϕ(`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . . ,

is called completely monotone on [0,∞).
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The following theorem which dates back to at least the 1940s [208] gives an integral
characterization of completely monotone functions.

Theorem 2.11 (Hausdorff-Bernstein-Widder Theorem) A function ϕ : [0,∞) → IR
is completely monotone on [0,∞) if and only if it is the Laplace transform of a finite
non-negative Borel measure µ on [0,∞), i.e., ϕ is of the form

ϕ(r) = Lµ(r) =

∫ ∞

0
e−rtdµ(t).

In 1938 Schoenberg first linked positive definite radial functions to completely mono-
tone functions:

Theorem 2.12 A function ϕ is completely monotone on [0,∞) if and only if Φ =
ϕ(‖ · ‖2) is positive definite and radial on IRs for all s.

Remark: Note that the function Φ is now defined via the square of the norm. This is
different from our earlier definition of radial functions (see Definition 1.5).

Moreover, the following interpolation theorem was already proved by Schoenberg in
1938 ([181], p. 823).

Theorem 2.13 If the function ϕ : [0,∞) → IR is completely monotone but not con-
stant, then ϕ(‖ · ‖2) is strictly positive definite and radial on IRs for any s.

Example: The following functions are completely monotone and not constant. There-
fore, they lead to strictly positive definite radial functions on any IRs, and can be used
as basic functions to generate bases for (4).

1. The functions ϕ(r) = (r + α2)−β , α, β > 0, are completely monotone and not
constant since

(−1)`ϕ(`)(r) = (−1)2`β(β+ 1) · · · (β+ `− 1)(r+α2)−β−` ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =
N
∑

j=1

cj
(

‖x− xj‖2 + α2
)−β

, x ∈ IRs,

can be used to solve the scattered data interpolation problem. The associated
interpolation matrix is guaranteed to be positive definite. These functions are
known as inverse multiquadrics.

2. The functions ϕ(r) = e−αr, α > 0, are completely monotone and not constant
since

(−1)`ϕ(`)(r) = α`e−αr ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =
N
∑

j=1

cje
−α‖x−xj‖2

, x ∈ IRs,

corresponds to interpolation with Gaussian radial basis functions.
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As a final remark in this section we mention that we are a long way from having a
complete characterization of (radial) functions for which the scattered data interpola-
tion problem has a unique solution. As we will see later, such a characterization will
involve also functions which are not strictly positive definite. For example, we will men-
tion a result of Micchelli’s according to which conditionally positive definite functions
of order one can be used for the scattered data interpolation problem. Furthermore,
all of the results dealt with so far involve radial basis functions which are centered at
the given data sites. There are only limited results addressing the situation in which
the centers for the basis functions and the data sites may differ.

3 Scattered Data Interpolation with Polynomial Preci-
sion and Conditionally Positive Definite Functions

3.1 Scattered Data Interpolation with Polynomial Precision

Sometimes the assumption on the form (1) of the solution to the scattered data inter-
polation Problem 1.1 is extended by adding certain polynomials to the expansion, i.e.,
Pf is now assumed to be of the form

Pf(x) =

N
∑

k=1

ckBk(x) +

M
∑

l=1

dlpl(x), x ∈ IRs, (10)

where p1, . . . , pM form a basis for the M =
(

s+m−1
m−1

)

-dimensional linear space Πs
m−1 of

polynomials of total degree less than or equal to m− 1 in s variables.
Since enforcing the interpolation conditions Pf(xi) = f(xi), i = 1, . . . , N , leads to

a system of N linear equations in the N +M unknowns ck and dl one usually adds the
M additional conditions

N
∑

k=1

ckpl(xk) = 0, l = 1, . . . ,M,

to ensure a unique solution.

Example: For m = s = 2 we add the space of bivariate linear polynomials, i.e.,
Π2

1 = span{1, x, y}. Using the notation x = (x, y) we get the expansion

Pf(x, y) =
N
∑

k=1

ckBk(x, y) + d1 + d2x+ d3y, x = (x, y) ∈ IR2,

which we use to solve

Pf(xi, yi) = f(xi, yi), i = 1, . . . , N,

together with the three additional conditions

N
∑

k=1

ck = 0,
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N
∑

k=1

ckxk = 0,

N
∑

k=1

ckyk = 0.

Remark: While the use of polynomials is somewhat arbitrary (any other set of M
linearly independent functions could be used), it is obvious that the addition of poly-
nomials of total degree at most m− 1 guarantees polynomial precision, i.e., if the data
come from a polynomial of total degree less than or equal to m− 1 they are fitted by
that polynomial.

In general, solving the interpolation problem based on the extended expansion (10)
now amounts to solving a system of linear equations of the form

[

A P
P T 0

] [

c

d

]

=

[

y

0

]

, (11)

where the pieces are given by Ajk = Bk(xj), j, k = 1, . . . , N , Pjl = pl(xj), j = 1, . . . , N ,
l = 1, . . . ,M , c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y = [y1, . . . , yN ]T , and 0 is a zero
vector of length M .

It is again possible to formulate a theorem concerning the well-posedness of this
interpolation problem.

3.2 Conditionally Positive Definite Functions

In analogy to the earlier discussion of interpolation with positive definite functions
we will now introduce conditionally positive definite and strictly conditionally positive
definite functions of order m. We will not present a linear algebra analog here since in
that context only orders m = 0 and m = 1 are relevant.

As for positive definite functions earlier, we can restrict ourselves to real-valued,
even functions Φ and real coefficients. A detailed discussion is presented in [205].

Definition 3.1 A real-valued continuous even function Φ is called conditionally posi-
tive definite of order m on IRs if

N
∑

j=1

N
∑

k=1

cjckΦ(xj − xk) ≥ 0 (12)

for any N points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ IRN satisfying

N
∑

j=1

cjx
α
j = 0, |α| < m, α ∈ INs

0 .

The function Φ is called strictly conditionally positive definite of order m on IRs if the
points x1, . . . ,xN ∈ IRs are distinct, and c 6= 0 implies strict inequality in (12).

13



Here we have used the usual multi-integer notation, i.e.,

α ∈ INs
0, |α| =

s
∑

i=1

αi, and xα = xα1
1 xα2

2 · · ·xαs
s .

An immediate observation is that a function which is conditionally positive definite
of orderm on IRs also is conditionally positive definite of any higher order. In particular,
this definition is more general than that for positive definite functions since the casem =
0 yields that class of functions, i.e., (strictly) conditionally positive definite functions
of order zero are (strictly) positive definite, and therefore a (strictly) positive definite
function is always (strictly) conditionally positive definite of any order.

The matrix A with entries Ajk = Φ(xj − xk) corresponding to a real and even
strictly conditionally positive definite function of order m can also be interpreted as
being positive definite on the space of vectors c such that

N
∑

j=1

cjx
α = 0, |α| < m.

Thus, in this sense, A is positive definite on the space of vectors c “perpendicular” to
polynomials of degree at most m− 1.

Using the Courant-Fischer Theorem from linear algebra Micchelli [135] showed that
interpolation with strictly conditionally positive definite functions of order one is pos-
sible even without adding a polynomial term.

Theorem 3.2 Suppose Φ is strictly conditionally positive definite of order one and
that Φ(0) ≤ 0. Then for any distinct points x1, . . . ,xN ∈ IRs the matrix A with entries
Ajk = Φ(xj − xk) has N − 1 positive and 1 negative eigenvalue, and is therefore non-
singular.

As we will see below, this theorem covers Franke’s conjecture about multiquadrics
Φ(x) = −(‖x‖2 + α2)β , α ≥ 0, 0 < β < 1, mentioned in the introduction.

Before we formulate the theorem about the uniqueness of the solution to the inter-
polation problem based on expansion (10), we define a property which forms a very
mild restriction on the location of the data sites.

Definition 3.3 We call a set of points X = {x1, . . . ,xN} ⊂ IRs m-unisolvent if the
only polynomial of total degree at most m interpolating zero data on X is the zero
polynomial.

This definition comes from polynomial interpolation, in which case it guarantees a
unique solution for interpolation to given data at a subset of the points x1, . . . ,xN by
a polynomial of degree m. A sufficient condition (to be found in [35], Ch. 9) on the
points x1, . . . ,xN to form an m-unisolvent set in IR2 is

14



Theorem 3.4 Suppose {L0, . . . , Lm} is a set of m + 1 distinct lines in IR2, and that
U = {u1, . . . ,uM} is a set of M = (m+ 1)(m+ 2)/2 distinct points such that the first
point lies on L0, the next two points lie on L1 but not on L0, and so on, so that the
last m + 1 points lie on Lm but not on any of the previous lines L0, . . . , Lm−1. Then
there exists a unique interpolation polynomial of total degree at most m to arbitrary
data given at the points in U . Furthermore, if the data sites {x1, . . . ,xN} contain U
as a subset then they form an m-unisolvent set on IR2.

This theorem can be generalized to IRs by using hyperplanes in IRs. A theorem
similar to Theorem 3.4 is already proved by Chung and Yao [36].

Example: As can easily be verified, three collinear points in IR2 are not 1-unisolvent,
since a linear interpolant, i.e., a plane through three arbitrary heights at these 3
collinear points is not uniquely determined. On the other hand, if a set of points
in IR2 contains 3 non-collinear points, then it is 1-unisolvent.

Now we are ready to state

Theorem 3.5 If the real-valued even function Φ is strictly conditionally positive defi-
nite of order m on IRs and the points x1, . . . ,xN form an (m− 1)-unisolvent set, then
the system of linear equations (11) is uniquely solvable.

There also exists an analog of Bochner’s Theorem, i.e., an integral characterization,
for conditionally positive definite functions. However, that goes beyond the scope of
this review.

3.3 Conditionally Positive Definite Radial Functions

In analogy to the discussion in Section 2 we now focus on conditionally positive definite
functions which are radial on IRs for all s. The paper [81] by Guo, Hu and Sun contains
an integral characterization for such functions. Again, this characterization is too
technical to be included here.

The main result in [81] is a characterization of conditionally positive definite radial
functions on IRs for all s in terms of completely monotone functions.

Theorem 3.6 Let ϕ ∈ C[0,∞) ∩ C∞(0,∞). Then the function Φ = ϕ(‖ · ‖2) is
conditionally positive definite of order m and radial on IRs for all s if and only if
(−1)mϕ(m) is completely monotone on (0,∞).

In order to get strict conditional positive definiteness we need to generalize Theo-
rem 2.13, i.e., the fact that ϕ not be constant.

Theorem 3.7 If ϕ is as in Theorem 3.6 and not a polynomial of degree at most m,
then Φ is strictly conditionally positive definite of order m and radial on IRs for all s.

Examples: We can easily verify the conditional positive definiteness of a number of
functions used in the radial basis function literature.
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1. The functions

ϕ(r) = (−1)dβe(r + α2)β , α > 0, β > 0, β /∈ IN

imply
ϕ(k)(r) = (−1)dβeβ(β − 1) · · · (β − k + 1)(r + α2)β−k

so that

(−1)dβeϕ(dβe)(r) = β(β − 1) · · · (β − dβe+ 1)(r + α2)β−dβe

is completely monotone. Moreover, m = dβe is the smallest possible m such that
(−1)mϕ(m) is completely monotone. Therefore, the multiquadrics

Φ(r) = (−1)dβe(r2 + α2)β , α > 0, β > 0,

are strictly conditionally positive definite of order m ≥ dβe and radial on IRs for
all s.

2. The functions
ϕ(r) = (−1)dβ/2erβ/2, β > 0, β /∈ 2 IN,

imply

ϕ(k)(r) = (−1)dβ/2eβ
2

(

β

2
− 1

)

· · ·
(

β

2
− k + 1

)

rβ/2−k

so that (−1)dβ/2eϕ(dβ/2e) is completely monotone and m = dβ/2e is the smallest
possible m such that (−1)mϕ(m) is completely monotone. Therefore, the powers

Φ(r) = (−1)dβ/2erβ, β > 0, β /∈ 2 IN,

are strictly conditionally positive definite of order m ≥ dβ/2e and radial on IRs

for all s.

3. The thin plate splines

Φ(‖x‖) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN,

are strictly conditionally positive definite of order m ≥ k + 1 and radial on IRs

for all s. To see this we observe that

2Φ(‖x‖) = (−1)k+1‖x‖2k log(‖x‖2).
Therefore, we let

ϕ(r) = (−1)k+1rk log r, k ∈ IN,

and get

ϕ(`)(r) = (−1)k+1k(k − 1) · · · (k − `+ 1)rk−` log r + p`(r), 1 ≤ ` ≤ k,
with p` a polynomial of degree k − `. Therefore,

ϕ(k)(r) = (−1)k+1k! log r + C

and

ϕ(k+1)(r) = (−1)k+1 k!

r
,

which is completely monotone on (0,∞).

16



Just as we mentioned earlier that compactly supported radial function cannot be
strictly positive definite on IRs for all s, it is important to note that there are no truly
conditionally positive definite functions with compact support.

4 Compactly Supported Radial Basis Functions

As just mentioned, compactly supported functions Φ that are truly strictly condition-
ally positive definite of order m > 0 do not exist. The compact support automatically
ensures that Φ is strictly positive definite. Another observation was that compactly
supported radial functions can be strictly positive definite on IRs only for a fixed max-
imal s-value. It is not possible for a function to be strictly positive definite and radial
on IRs for all s and also have a compact support. Therefore we focus our attention
on the characterization and construction of functions that are compactly supported,
strictly positive definite and radial on IRs for some fixed s.

According to results stated earlier (Bochner’s Theorem and generalizations thereof),
a function is strictly positive definite and radial on IRs if its s-variate Fourier transform
is non-negative. Theorem 2.2 gives the Fourier transform of Φ = ϕ(‖ · ‖) as

Φ̂(x) = Fsϕ(r) = r−(s−2)/2

∫ ∞

0
ϕ(t)ts/2J(s−2)/2(rt)dt.

4.1 Operators for Radial Functions and Dimension Walks

Schaback and Wu [180] defined an integral operator and its inverse differential operator,
and discussed an entire calculus for how these operators act on radial functions. These
operators facilitate the construction of compactly supported radial functions.

Definition 4.1 1. Let ϕ be such that t 7→ tϕ(t) ∈ L1[0,∞), then we define

(Iϕ)(r) =

∫ ∞

r
tϕ(t)dt, r ≥ 0.

2. For even ϕ ∈ C2(IR) we define

(Dϕ)(r) = −1

r
ϕ′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even functions using
even extension.

The most important properties of these operators are (see, e.g., [180] or [199]):

Theorem 4.2 1. Both D and I preserve compact support, i.e., if ϕ has compact
support, then so do Dϕ and Iϕ.

2. If ϕ ∈ C( IR) and t 7→ tφ(t) ∈ L1[0,∞), then DIϕ = ϕ.

3. If ϕ ∈ C2(IR) is even and ϕ′ ∈ L1[0,∞), then IDϕ = ϕ.
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4. If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).

5. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then Fs(ϕ) = Fs+2(Dϕ).

The operators I and D allow us to express s-variate Fourier transforms as (s− 2)-
or (s+ 2)-variate Fourier transforms, respectively. In particular, a direct consequence
of the above properties and the characterization of strictly positive definite radial func-
tions (Theorem 2.8) is

Theorem 4.3 1. Suppose ϕ ∈ C(IR). If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then ϕ
is strictly positive definite and radial on IRs if and only if Iϕ is strictly positive
definite and radial on IRs−2.

2. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then ϕ is strictly positive
definite and radial on IRs if and only if Dϕ is strictly positive definite and radial
on IRs+2.

This allows us to construct new strictly positive definite radial functions from given
ones by a “dimension-walk” technique that steps through multivariate Euclidean space
in even increments.

4.2 Wendland’s Compactly Supported Functions

In [199] Wendland constructed a popular family of compactly supported radial functions
by starting with the truncated power function (which we know to be strictly positive
definite and radial on IRs for s ≤ 2` − 1), and then walking through dimensions by
repeatedly applying the operator I.

Definition 4.4 With ϕ`(r) = (1− r)`
+ we define

ϕs,k = Ikϕbs/2c+k+1.

It turns out that the functions ϕs,k are all supported on [0, 1] and have a polynomial
representation there. More precisely,

Theorem 4.5 The functions ϕs,k are strictly positive definite and radial on IRs and
are of the form

ϕs,k(r) =

{

ps,k(r), r ∈ [0, 1],
0, r > 1,

with a univariate polynomial ps,k of degree bs/2c+3k+1. Moreover, ϕs,k ∈ C2k(IR) are
unique up to a constant factor, and the polynomial degree is minimal for given space
dimension s and smoothness 2k.

Wendland gave recursive formulas for the functions ϕs,k for all s, k. We instead list
the explicit formulas of [57]
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Theorem 4.6 The functions ϕs,k, k = 0, 1, 2, 3, have the form

ϕs,0(r) = (1− r)`
+,

ϕs,1(r)
.
= (1− r)`+1

+ [(`+ 1)r + 1] ,

ϕs,2(r)
.
= (1− r)`+2

+

[

(`2 + 4`+ 3)r2 + (3`+ 6)r + 3
]

,

ϕs,3(r)
.
= (1− r)`+3

+

[

(`3 + 9`2 + 23`+ 15)r3 + (6`2 + 36`+ 45)r2 + (15`+ 45)r + 15
]

,

where ` = bs/2c + k + 1, and the symbol
.
= denotes equality up to a multiplicative

positive constant.

Examples: For s = 3 we get some of the most commonly used functions as

ϕ3,0(r) = (1− r)2+, ∈ C0 ∩ SPD(IR3)
ϕ3,1(r)

.
= (1− r)4+ (4r + 1) , ∈ C2 ∩ SPD(IR3)

ϕ3,2(r)
.
= (1− r)6+

(

35r2 + 18r + 3
)

, ∈ C4 ∩ SPD(IR3)
ϕ3,3(r)

.
= (1− r)8+

(

32r3 + 25r2 + 8r + 1
)

, ∈ C6 ∩ SPD(IR3).

4.3 Wu’s Compactly Supported Functions

In [212] Wu presents another way to construct strictly positive definite radial functions
with compact support. He starts with the function

ψ(r) = (1− r2)`
+, ` ∈ IN,

which is strictly positive definite and radial. Wu then constructs another function that
is strictly positive definite and radial on IR by convolution, i.e.,

ψ`(r) = (ψ ∗ ψ)(2r)

=

∫ ∞

−∞
(1− t2)`

+(1− (2r − t)2)`
+dt

=

∫ 1

−1
(1− t2)`(1− (2r − t)2)`dt.

This function is strictly positive definite since its Fourier transform is essentially the
square of the Fourier transform of ψ. Just like the Wendland functions, this function
is a polynomial on its support. In fact, the degree of the polynomial is 4` + 1, and
ψ` ∈ C2`(IR).

Now, a family of strictly positive definite radial functions is constructed by a di-
mension walk using the D operator, i.e.,

ψk,` = Dkψ`.

The functions ψk,` are strictly positive definite and radial in IRs for s ≤ 2k + 1, are
polynomials of degree 4`− 2k+ 1 on their support and in C2(`−k) in the interior of the
support. On the boundary the smoothness increases to C2`−k.

Example: For ` = 3 we can compute the three functions

ψk,3(r) = Dkψ3(r) = Dk((1− ·2)3+ ∗ (1− ·2)3+)(2r), k = 0, 1, 2, 3.
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This results in

ψ0,3(r)
.
=

(

5− 39r2 + 143r4 − 429r6 + 429r7 − 143r9 + 39r11 − 5r13
)

+.
= (1− r)7+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) ∈ C6 ∩ SPD(IR)

ψ1,3(r)
.
=

(

6− 44r2 + 198r4 − 231r5 + 99r7 − 33r9 + 5r11
)

+.
= (1− r)6+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) ∈ C4 ∩ SPD(IR3)

ψ2,3(r)
.
=

(

8− 72r2 + 105r3 − 63r5 + 27r7 − 5r9
)

+.
= (1− r)5+(8 + 40r + 48r2 + 25r3 + 5r4) ∈ C2 ∩ SPD(IR5)

ψ3,3(r)
.
=

(

16− 35r + 35r3 − 21r5 + 5r7
)

+.
= (1− r)4+(16 + 29r + 20r2 + 5r3) ∈ C0 ∩ SPD(IR7).
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Figure 1: Plot of Wendland’s functions (left), Wu’s functions (center), and Buhmann’s
function (right) listed as examples.

Remarks:

1. For a prescribed smoothness the polynomial degree of Wendland’s functions is
lower than that of Wu’s functions. For example, both Wendland’s function ϕ3,2

and Wu’s function ψ1,3 are C4 smooth and strictly positive definite and radial in
IR3. However, the polynomial degree of Wendland’s function is 8, whereas that
of Wu’s function is 11.

2. While both families of strictly positive definite compactly supported functions are
constructed via dimension walk, Wendland uses integration (and thus obtains
a family of increasingly smoother functions), whereas Wu needs to start with
a function of sufficient smoothness, and then obtains successively less smooth
functions (via differentiation).

4.4 Buhmann’s Compactly Supported Functions

A third family of compactly supported strictly positive definite radial functions that
has appeared in the literature is due to Buhmann (see [25]). Buhmann’s functions
contain a logarithmic term in addition to a polynomial. His functions have the general
form

φ(r) =

∫ ∞

0
(1− r2/t)λ

+t
α(1− tδ)ρ

+dt.
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Here 0 < δ ≤ 1
2 , ρ ≥ 1, and in order to obtain functions that are strictly positive

definite and radial on IRs for s ≤ 3 the constraints for the remaining parameters are
λ ≥ 0, and −1 < α ≤ λ−1

2 .

Example: An example with α = δ = 1
2 , ρ = 1 and λ = 2 is listed in [26]:

φ(r)
.
= 12r4 log r − 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1, ∈ C2 ∩ SPD(IR3).

Remarks:

1. While Buhmann [26] claims that his construction encompasses both Wendland’s
and Wu’s functions, Wendland [205] gives an even more general theorem that
shows that integration of a positive function f ∈ L1[0,∞) against a strictly posi-
tive definite (compactly supported) kernel K results in a (compactly supported)
strictly positive definite function, i.e.,

ϕ(r) =

∫ ∞

0
K(t, r)f(t)dt

is strictly positive definite. Buhmann’s construction then corresponds to choosing
f(t) = tα(1− tδ)ρ

+ and K(t, r) = (1− r2/t)λ
+.

5 Error Bounds and the Variational Approach

In order to estimate the approximation properties of the functions studied thus far
we will now consider the variational approach to scattered data interpolation. This
approach was used first for radial basis function interpolation by Madych and Nelson
[123], and later adopted by many others (see, e.g., [117, 118], [155], [167], [200, 201],
[213]). We will see that for every strictly positive definite radial function there is an
associated Hilbert space in which the radial basis function interpolant provides the best
approximation to a given function. This optimality of interpolants in Hilbert space is
the subject of the theory of optimal recovery described in the late 1950s by Golomb and
Weinberger in their paper [79]. The following discussion follows mostly the presentation
in [205].

5.1 Reproducing Kernel Hilbert Spaces

We begin with

Definition 5.1 Let H be a real Hilbert space of functions f : Ω → IR. A function
K : Ω× Ω→ IR is called reproducing kernel for H if

1. K(x, ·) ∈ H for all x ∈ Ω,

2. f(x) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ Ω.

It is known that the reproducing kernel of a Hilbert space is unique, and that
existence of a reproducing kernel is equivalent to the fact that the point evaluation
functionals δx are bounded linear functionals, i.e., there exists a positive constant
M = Mx such that

|δxf | = |f(x)| ≤M‖f‖H
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for all f ∈ H. This latter fact is due to the Riesz Representation Theorem.
Other properties of reproducing kernels are

Theorem 5.2 Suppose H is a Hilbert space of functions f : Ω → IR with reproducing
kernel K and H∗ its dual space, i.e., the space of linear functionals on H. Then we
have

1. K(x,y) = 〈K(x, ·),K(·,y)〉H for x,y ∈ Ω.

2. K(x,y) = K(y,x) for x,y ∈ Ω.

3. Convergence in Hilbert space norm implies pointwise convergence.

Moreover, the reproducing kernelK is known to be positive definite andK is strictly
positive definite if and only if the point evaluation functionals are linearly independent
in H∗. In the following we use a slight generalization of the notion of a positive definite
function to a positive definite kernel. Essentially, we replace Φ(xj−xk) in Definition 1.4
by K(xj ,xk).

While it is good to know that every reproducing kernel is positive definite our
interest, however, lies in the other direction. Since we are starting with strictly positive
definite functions, we need to show how to construct an associated reproducing kernel
Hilbert space.

5.2 Native Spaces for Strictly Positive Definite Functions

First, we note that Definition 5.1 tells us that H contains all functions of the form

f =
N
∑

j=1

cjK(xj , ·)

provided xj ∈ Ω. Theorem 5.2 implies that

‖f‖2H = 〈f, f〉H = 〈
N
∑

j=1

cjK(xj , ·),
N
∑

k=1

ckK(·,xk)〉H

=
N
∑

j=1

N
∑

k=1

cjck〈K(xj , ·),K(·,xk)〉H

=

N
∑

j=1

N
∑

k=1

cjckK(xj ,xk).

Therefore, we define the space

HK(Ω) = span{K(·,y) : y ∈ Ω}

with an associated bilinear form

〈
N
∑

j=1

cjK(·,xj),
N
∑

k=1

dkK(·,yk)〉K =
N
∑

j=1

N
∑

k=1

cjdkK(xj ,yk).
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Theorem 5.3 If K : Ω× Ω→ IR is a symmetric strictly positive definite kernel, then
the bilinear form 〈·, ·〉K defines an inner product on HK(Ω). Furthermore, HK(Ω) is a
pre-Hilbert space with reproducing kernel K.

The native space NK(Ω) of K is now defined to be the completion of HK(Ω) with
respect to the K-norm ‖ · ‖K so that ‖f‖K = ‖f‖NK(Ω) for all f ∈ HK(Ω). There are
a number of technical details concerned with this construction which are discussed in
the papers [172, 173] by Schaback or [205] by Wendland.

In the special case when we are dealing with strictly positive definite (translation
invariant) functions Φ(x − y) = K(x,y) and when Ω = IRs we get a characterization
of native spaces in terms of Fourier transforms.

Theorem 5.4 Suppose Φ ∈ C(IRs) ∩ L1(IR
s) is a real-valued strictly positive definite

function. Define

G = {f ∈ L2(IR
s) ∩ C(IRs) :

f̂
√

Φ̂
∈ L2(IR

s)}

and equip this space with the bilinear form

〈f, g〉G =
1

√

(2π)s
〈 f̂√

Φ̂
,
ĝ
√

Φ̂
〉L2(IRs) =

1
√

(2π)s

∫

IRs

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

Then G is a real Hilbert space with inner product 〈·, ·〉G and reproducing kernel Φ(·− ·).
Hence, G is the native space of Φ on IRs, i.e., G = NΦ(IRs) and both inner product
coincide. In particular, every f ∈ NΦ(IRs) can be recovered from its Fourier transform
f̂ ∈ L1(IR

s) ∩ L2(IR
s).

Remarks:

1. This theorem shows that the native spaces can be viewed as a generalization of
the standard Sobolev spaces. Indeed, for m > s/2 the Sobolev space Wm

2 can be
defined as

Wm
2 (IRs) = {f ∈ L2(IR

s) ∩ C(IRs) : f̂(·)(1 + ‖ · ‖22)m/2 ∈ L2(IR
s)}.

Therefore, any strictly positive definite function Φ whose Fourier transform decays
only algebraically has a Sobolev space as its native space. In particular, the
compactly supported Wendland functions Φs,k = ϕs,k(‖ · ‖2) of Section 4 can be

shown to have native spaces NΦs,k
(IRs) = W

s/2+k+1/2
2 (IRs) (where the restriction

s ≥ 3 is required for the special case k = 0).

2. Native spaces for strictly conditionally positive definite functions can also be
constructed. However, since this is more technical, we limit the discussion here
to strictly positive definite functions, and refer the interested reader to the papers
[172, 173] or [205].
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3. The native spaces of the powers and thin plate (or surface) splines of Examples 2
and 3 of Section 3.3 can be shown to be the so-called Beppo-Levi spaces of order
k

BLk(IR
s) = {f ∈ C(IRs) : Dαf ∈ L2(IR

s) for all |α| = k, α ∈ INs},
where Dα denotes a generalized derivative of order α. In fact, the intersection of
all Beppo-Levi spaces BLk(IR

s) of order k ≤ m yields the Sobolev spaceWm
2 (IRs).

For more details see [205]. These spaces were already studied in the early papers
by Duchon [44, 45, 46, 47].

4. The native spaces for Gaussians and (inverse) multiquadrics are rather small.
For example, according to Theorem 5.4, for Gaussians the Fourier transform of
f ∈ NΦ(Ω) must decay faster than the Fourier transform of the Gaussian (which
is itself a Gaussian). It is known that, however, even though the native space
of Gaussians is small, it does contain the so-called band-limited functions, i.e.,
functions whose Fourier transform is compactly supported. These functions play
an important role in sampling theory where Shannon’s famous Sampling Theorem
[184] states that any band-limited function can be completely recovered from its
discrete samples provided the function is sampled at a sampling rate at least twice
its bandwidth. The content of this theorem was already known to Whitaker [206]
in 1915.

Theorem 5.5 Suppose f ∈ C(IRs) ∩ L1(IR
s) such that its Fourier

transform vanishes outside the cube Q =
[

−1
2 ,

1
2

]s
. Then f can be

uniquely reconstructed from its values on ZZs, i.e.,

f(x) =
∑

ξ∈ZZs

f(ξ)sinc(x− ξ), x ∈ IRs .

Here the sinc function is defined for any x = (x1, . . . , xs) ∈ IRs as sinc x =
∏s

i=1
sin(πxi)

πxi
. For more details on Shannon’s Sampling Theorem see, e.g., Chap-

ter 29 in the book [33] by Cheney and Light or the paper [194] by Unser.

5.3 The Power Function and Error Estimates

Our goal in this section is to provide error estimates for scattered data interpolation
with strictly (conditionally) positive definite functions. In their final form these esti-
mates will need to involve some kind of measure of the data distribution. The measure
that is usually used is the so-called fill distance

h = hX ,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2

which indicates how well the data fill out the domain Ω. The fill distance denotes the
radius of the largest possible empty ball that can be placed among the data locations.
We will be interested in whether the error

‖f − Phf‖∞
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tends to zero as h → 0, and if so, how fast. Here {Ph}h presents a sequence of
interpolation (or, more generally, projection) operators that vary with the fill distance
h. For example, Ph could denote interpolation to data given at (2n + 1)s, n = 1, 2, . . .,
equally spaced points in the unit cube in IRs (with h = 2−n). Of course, the definition
of the fill distance allows for scattered data as well.

Since we want to use the machinery of reproducing kernel Hilbert spaces we will
concentrate on error estimates for functions f ∈ NΦ. At the end of this section we will
also mention some more general estimates.

The term that is often used to measure the speed of convergence to zero is approxi-
mation order. We say that the approximation operator Ph has Lp-approximation order
k if

‖f − Phf‖p = O(hk) for h→ 0.

Moreover, if we can also show that ‖f − Phf‖p 6= o(hk), then Ph has exact Lp-
approximation order k. We will concentrate mostly on the case p = ∞, but approxi-
mation order in other norms can also be studied.

In order to keep the following discussion as transparent as possible we will restrict
ourselves to strictly positive definite functions. With (considerably) more technical
details the following can also be formulated for strictly conditionally positive definite
functions (see [205] for details).

The key idea for the following discussion is to express the interpolant in Lagrange
form, i.e., using cardinal basis functions. This idea is due to Schaback and Wu [213].
In the previous sections we established that, for any strictly positive definite function
Φ, the linear system

Ac = y

with Aij = Φ(xi − xj), i, j = 1, . . . , N , c = [c1, . . . , cN ]T , and y = [f(x1), . . . , f(xN )]T

has a unique solution. In the following we will consider the more general situation where
Φ is a strictly positive definite kernel, i.e., the entries of A are given by Aij = Φ(xi,xj).

In order to obtain the cardinal basis functions u∗j , j = 1, . . . , N , with the property
u∗j (xi) = δij we consider the linear system

Au∗(x) = b(x),

where the matrix A is as above (and therefore invertible), u∗ = [u∗1, . . . , u
∗
N ]T , and

b = [Φ(·,x1), . . . ,Φ(·,xN )]T . Thus,

Theorem 5.6 Suppose Φ is a strictly positive definite kernel on IRs. Then, for any
distinct points x1, . . . ,xN , there exist functions u∗j ∈ span{Φ(·,xj), j = 1, . . . , N} such
that u∗j (xi) = δij.

Therefore, we can write Pf in the cardinal form

Pf(x) =
N
∑

j=1

f(xj)u
∗
j (x), x ∈ IRs .

Another important ingredient in our estimates is the so-called power function. To
this end, we consider a domain Ω ⊆ IRs. Then for any strictly positive definite kernel
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Φ ∈ C(Ω × Ω), any set of distinct points X = {x1, . . . ,xN} ⊆ Ω, and any vector
u ∈ IRN , we define the quadratic form

Q(u) = Φ(x,x)− 2
N
∑

j=1

ujΦ(x,xj) +
N
∑

i=1

N
∑

j=1

uiujΦ(xi,xj)

= 〈Φ(·,x),Φ(·,x)〉NΦ(Ω) − 2
N
∑

j=1

uj〈Φ(·,x),Φ(·,xj)〉NΦ(Ω)

+
N
∑

i=1

N
∑

j=1

uiuj〈Φ(·,xi),Φ(·,xj)〉NΦ(Ω)

= 〈Φ(·,x)−
N
∑

j=1

ujΦ(·,xj),Φ(·,x)−
N
∑

j=1

ujΦ(·,xj)〉NΦ(Ω)

=

∥

∥

∥

∥

∥

∥

Φ(·,x)−
N
∑

j=1

ujΦ(·,xj)

∥

∥

∥

∥

∥

∥

2

NΦ(Ω)

. (13)

Here we have used the definition of the native space norm from the previous section.
Then

Definition 5.7 Suppose Ω ⊆ IRs and Φ ∈ C(Ω×Ω) is strictly positive definite on IRs.
For any distinct points X = {x1, . . . ,xN} ⊆ Ω the power function is defined by

[PΦ,X (x)]2 = Q(u∗(x)),

where u∗ is the vector of cardinal functions from Theorem 5.6.

The name power function was chosen by Schaback based on its connection to the
power function of a statistical decision function [197]. In the paper [213] by Wu and
Schaback the power function was referred to as kriging function. This terminology
comes from geostatistics (see, e.g., [144]).

Now we can give a first generic error estimate. Contrary to our principles applied
throughout the rest of this survey we will provide a proof of this theorem.

Theorem 5.8 Let Ω ⊆ IRs, Φ ∈ C(Ω × Ω) be strictly positive definite on IRs, and
suppose that the points X = {x1, . . . ,xN} are distinct. Denote the interpolant to
f ∈ NΦ(Ω) on X by Pf . Then for every x ∈ Ω

|f(x)− Pf(x)| ≤ PΦ,X (x)‖f‖NΦ(Ω).

Proof: We express the interpolant in its cardinal form and apply the reproducing
property of Φ. This gives us

Pf(x) =
N
∑

j=1

f(xj)u
∗
j (x)
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=
N
∑

j=1

u∗j (x)〈f,Φ(·,xj)〉NΦ(Ω)

= 〈f,
N
∑

j=1

u∗j (x)Φ(·,xj)〉NΦ(Ω).

For f the reproducing property of Φ yields

f(x) = 〈f,Φ(·,x)〉NΦ(Ω).

Now we combine these two formulas and apply the Cauchy-Schwarz inequality

|f(x)− Pf(x)| =

∣

∣

∣

∣

∣

∣

〈f,Φ(·,x)−
N
∑

j=1

u∗j (x)Φ(·,xj)〉NΦ(Ω)

∣

∣

∣

∣

∣

∣

≤ ‖f‖NΦ(Ω)

∥

∥

∥

∥

∥

∥

Φ(·,x)−
N
∑

j=1

u∗j (x)Φ(·,xj)

∥

∥

∥

∥

∥

∥

NΦ(Ω)

= ‖f‖NΦ(Ω)PΦ,X (x),

where we have applied (13) and the definition of the power function. �

Remark: One of the main benefits of Theorem 5.8 is that we are now able to estimate
the interpolation error by considering two independent phenomena:

• the smoothness of the data (measured in terms of the native space norm of f –
which is independent of the data locations),

• and the contribution due to the use of the basic function Φ and the distribution
of the data (measured in terms of the power function – independent of the actual
data values).

This is analogous to the standard error estimate for polynomial interpolation cited in
most numerical analysis texts.

The next step is to refine this error bound by expressing the influence of the data
locations in terms of the fill distance. And then, of course, the bound needs to be
specialized to various choices of basic functions Φ.

The strategy to obtaining most error bounds in numerical analysis is to take ad-
vantage of the polynomial precision of a method (at least locally), and then to apply
a Taylor expansion. We will not go into any of the details here, and instead state the
resulting theorem that includes the more general case of strictly conditionally positive
definite functions and also covers the error for approximating the derivatives of f by
derivatives of Pf (see [205] for details).

Theorem 5.9 Suppose Ω ⊆ IRs is open and bounded and satisfies an interior cone
condition. Suppose Φ ∈ C2k(Ω × Ω) is symmetric and strictly conditionally positive
definite of order m on IRs. Denote the interpolant to f ∈ NΦ(Ω) on the (m − 1)-
unisolvent set X by Pf . Fix α ∈ INs

0 with |α| ≤ k. Then there exist positive constant
h0 and C (independent of x, f and Φ) such that

|Dαf(x)−DαPf(x)| ≤ CCΦ(x)1/2h
k−|α|
X ,Ω |f |NΦ(Ω),
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provided hX ,Ω ≤ h0. Here

CΦ(x) = max
β,γ∈INs

0
|β|+|γ|=2k

max
w,z∈Ω∩B(x,c2hX ,Ω)

|Dβ
1D

γ
2 Φ(w, z)|.

Remarks:

1. For infinitely smooth strictly positive definite functions such as the Gaussians
and the inverse multiquadrics we see that the approximation order k is arbitrarily
high.

2. For strictly positive definite functions with limited smoothness such as the Wend-
land functions ϕs,k the approximation order is limited by the smoothness of the
basic function.

3. The estimate in Theorem 5.9 is still generic, since it does not account for the
particular basic function Φ being used for the interpolation.

4. We point out that the factor CΦ may still depend on hX ,Ω. For most basic
functions it will be possible to use CΦ to “squeeze out” additional powers of h.
This is the reason for splitting the constant in front of the h-power into a generic
C and a CΦ.

The additional refinement of the error estimate of Theorem 5.9 for specific functions
Φ is rather technical (for details see, e.g., [205]). We only list the final bounds for various
functions Φ.

Application of Theorem 5.9 to infinitely smooth functions such as Gaussians or
(inverse) multiquadrics immediately yields arbitrarily high algebraic convergence rates,
i.e., for every ` ∈ IN and |α| ≤ ` we have

|Dαf(x)−DαPf(x)| ≤ C`h
`−|α||f |NΦ(Ω).

whenever f ∈ NΦ(Ω). Considerable amount of work has gone into investigating the
dependence of the constant C` on `. It is possible to show that for Gaussians Φ(x) =
e−α‖x‖2

, α > 0, we get for some positive constant c that

‖f − Pf‖L∞(Ω) ≤ e
−c| log hX ,Ω|

hX ,Ω ‖f‖NΦ(Ω) (14)

provided hX ,Ω is sufficiently small and f ∈ NΦ(Ω). The corresponding result for (in-
verse) multiquadrics Φ(x) = (‖x‖2 + α2)β , α > 0, β < 0, or β > 0 and β /∈ IN,
is

‖f − Pf‖L∞(Ω) ≤ e
−c

hX ,Ω |f |NΦ(Ω) (15)

For functions with finite smoothness (such as powers, thin plate splines, and Wend-
land’s compactly supported functions) it is possible to bound the constant CΦ(x) and
thereby to improve the order predicted by Theorem 5.9 by some additional powers of
h. This results in the following error estimates.

For the powers Φ(x) = (−1)dβ/2e‖x‖β , β > 0, β /∈ 2 IN, we get

|Dαf(x)−DαPf(x)| ≤ Chβ

2
−|α||f |NΦ(Ω). (16)
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provided |α| ≤ dβe−1
2 and f ∈ NΦ(Ω).

For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, we get

|Dαf(x)−DαPf(x)| ≤ Chk−|α||f |NΦ(Ω). (17)

provided |α| ≤ k − 1 and f ∈ NΦ(Ω).
For Wendland’s compactly supported functions Φs,k(x) = ϕs,k(‖x‖) this first re-

finement leads to

|Dαf(x)−DαPf(x)| ≤ Chk+ 1
2
−|α|‖f‖NΦ(Ω). (18)

provided |α| ≤ k and f ∈ NΦ(Ω).

Remark: The convergence result for the compactly supported functions assumes that
the support radius is kept fixed, and that only the domain Ω is filled out by adding
more points to X , and thus decreasing the fill distance hX ,Ω. However, this means
that for small fill distances (with fixed support radius) the system matrices of the
interpolation problem become more and more dense – and thus the advantage of the
compact support is lost. This point of view is referred to in the literature as the
non-stationary approach. We are guaranteed convergence, but at the cost of increased
computational complexity. Another possibility is presented by the stationary approach,
for which we scale the support radius proportional to the fill distance. In this case the
sparsity of the interpolation matrix remains fixed, however, convergence is lost. We
will revisit this phenomenon later.

The powers and thin plate splines can be interpreted as a generalization of univariate
natural splines. Therefore, one can see that the approximation order estimates obtained
via the native space approach are not optimal. For example, for interpolation with thin
plate splines Φ(x) = ‖x‖2 log ‖x‖ one would expect orderO(h2), but the above estimate
yields only O(h).

One can improve the estimates for functions with finite smoothness (i.e., powers,
thin plate splines, Wendland’s functions) by either (or both) of the following two ideas:

• by requiring the data function f to be even smoother than what the native space
prescribes, i.e., by building certain boundary conditions into the native space;

• by using weaker norms to measure the error.

The idea to localize the data by adding boundary conditions was introduced in a
paper by Light and Wayne [118]. This “trick” allows us to double the approximation
order. The second idea can already be found in the early work by Duchon [46]. After
applying both improvements the final approximation order estimate for interpolation
with the compactly supported functions Φs,k is (see [201])

‖f − Pf‖L2(Ω) ≤ Ch2k+1+s‖f‖W 2k+1+s
2 (IRs), (19)

where f is assumed to lie in the subspace W 2k+1+s
2 (IRs) of NΦ(IRs). For powers and

thin plate splines one obtains L2-error estimates of order O(hβ+s) and O(h2k+s), re-
spectively. These estimates are optimal, i.e., exact approximation orders, as shown by
Bejancu [16].
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Work on improved error bounds is also due to others such as Bejancu, Johnson,
Powell, Ron, Schaback, and Yoon. In particular, recent work by Yoon provides Lp

error estimates for so-called shifted surface splines for functions f is standard Sobolev
spaces. These functions include all of the (inverse) multiquadrics, powers and thin
plate splines. They are of the form

Φ(x) =

{

(−1)dβ−s/2e(‖x‖2 + α2)β−s/2, s odd,

(−1)β−s/2+1(‖x‖2 + α2)β−s/2 log(‖x‖2 + α2)1/2, s even,

where β ∈ IN, β > s/2.
Yoon [214] has the following theorem that is formulated in the stationary setting.

Theorem 5.10 Let Φ be a shifted surface spline with parameter α proportional to the
fill distance hX ,Ω. Then there exists a positive constant C (independent of X ) such that
for every f ∈Wm

2 (Ω) ∩Wm
∞(Ω) we have

‖f − Pf‖Lp(Ω) ≤ Chγp |f |W m
2 (IRs), 1 ≤ p ≤ ∞,

with
γp = min{m,m− s/2 + s/p}.

Furthermore, if f ∈W k
2 (Ω) ∩W k

∞(Ω) with max{0, s/2− s/p} < k < m, then

‖f − Pf‖Lp(Ω) = o(hγp−m+k).

Remarks:

1. Using the localization idea mentioned above Yoon’s estimates can be “doubled”
to O(hm+γp).

2. Yoon’s estimates address the question of how well the infinitely smooth (inverse)
multiquadrics approximate functions that are less smooth than those in their
native space. For example, Theorem 5.10 states that approximation to functions
in W 2

2 (Ω), Ω ⊆ IR3, by multiquadrics Φ(x) =
√

‖x‖2 + α2 is of the order O(h2).
However, it needs to be emphasized that this refers to stationary approximation,
i.e., α is scaled proportional to the fill distance, whereas the spectral order given
in (15) corresponds to the non-stationary case with fixed α. Similar numerical
evidence was also provided much earlier by Schaback [167].

3. Moreover, the second part of Yoon’s result is a step toward exact approximation
orders.

5.4 The Connection to Optimal Recovery

In the paper [79] by Michael Golomb and Hans Weinberger the following general prob-
lem is studied: Given the values f1 = λ1(f), . . . , fN = λN (f) ∈ IR, where {λ1, . . . , λN}
is a linearly independent set of linear functionals (called information functionals yield-
ing the information about f), how does one “best” approximate the value λ(f) where
λ is a given linear functional and f is unknown? The value λ(f) is also referred to as
a feature of f .
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Remarks:

1. This is a very general problem formulation that allows not only for interpolation
of function values, but also for other types of data (such as values of derivatives,
integrals of f , moments of f , etc.), as well as other types of approximation.

2. Optimal recovery was also studied in detail by Micchelli, Rivlin and Winograd
[136, 137, 138, 139].

In a Hilbert space setting the solution to this “optimal recovery problem” is shown
to be the minimum-norm interpolant. More precisely, given f1 = λ1(f), . . . , fN =
λN (f) ∈ IR with {λ1, . . . , λN} ⊆ H∗, the minimum-norm interpolant is that function
s∗ ∈ H that satisfies

λj(s
∗) = fj , j = 1, . . . , N,

and for which
‖s∗‖H = min

s∈H
λj(s)=fj ,j=1,...,N

‖s‖H.

It turns out that the radial basis function interpolant satisfies these criteria if H is
taken as the associated native space NΦ(Ω). Since we are working in a Hilbert space,
the following two orthogonality lemmas are easy to prove. They provide the essence of
the two “optimality theorems” stated below.

Lemma 5.11 Assume Φ is a symmetric strictly positive definite kernel on IRs and let

Pf =
N
∑

j=1

cjΦ(·,xj) be the interpolant to f ∈ NΦ(Ω) on X = {x1, . . . ,xN} ⊆ Ω. Then

〈Pf,Pf − s〉NΦ(Ω) = 0

for all interpolants s ∈ NΦ(X ), i.e., with s(xj) = f(xj), j = 1, . . . , N .

Lemma 5.12 Assume Φ is a strictly positive definite kernel on IRs and let Pf be the
interpolant to f ∈ NΦ(Ω) on X = {x1, . . . ,xN} ⊆ Ω. Then

〈f − Pf, s〉NΦ(Ω) = 0

for all s ∈ HΦ(X ) = {s =
∑N

j=1 cjΦ(·,xj),xj ∈ X}.

The following “energy splitting” theorem is an immediate consequence of Lemma 5.12.
It says that the native space energy of f can be split into the energy of the interpolant
Pf and that of the residual f − Pf .

Corollary 5.13 The orthogonality property of Lemma 5.12 implies the energy split

‖f‖2NΦ(Ω) = ‖f − Pf‖2NΦ(Ω) + ‖Pf‖2NΦ(Ω).
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Proof: The statement follows from

‖f‖2NΦ(Ω) = ‖f − Pf + Pf‖2NΦ(Ω)

= 〈(f − Pf) + Pf, (f − Pf) + Pf〉NΦ(Ω)

= ‖f − Pf‖2NΦ(Ω) + 2〈f − Pf,Pf〉NΦ(Ω) + ‖Pf‖2NΦ(Ω)

and the fact that 〈f − Pf,Pf〉NΦ(Ω) = 0 by Lemma 5.12. �

Remark: The above energy split is the fundamental idea behind a number of Krylov-
type iterative algorithms for approximately solving the interpolation problem when
very large data sets are involved (see, e.g., the papers [66] and [67] by Faul and Powell
or [178] by Schaback and Wendland mentioned in Section 8).

The following theorem shows the first optimality property of strictly conditionally
positive definite kernels. It is taken from [205].

Theorem 5.14 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite kernel
with respect to the finite-dimensional space P ⊆ C(Ω) and that X is P -unisolvent. If the
values f1, . . . , fN are given, then the interpolant Pf is the minimum-norm interpolant
to {fj}Nj=1, i.e.,

|Pf |NΦ(Ω) = min
s∈NΦ(Ω)

s(xj)=fj ,j=1,...,N

|s|NΦ(Ω).

Proof: We consider only the strictly positive definite case. Consider an arbitrary
interpolant s ∈ NΦ(Ω) to f1, . . . , fN . Since Pf ∈ NΦ(Ω) we can apply Lemma 5.11
and get

〈Pf,Pf − s〉NΦ(Ω) = 0.

Now

|Pf |2NΦ(Ω) = 〈Pf,Pf − s+ s〉NΦ(Ω)

= 〈Pf,Pf − s〉NΦ(Ω) + 〈Pf, s〉NΦ(Ω)

= 〈Pf, s〉NΦ(Ω)

≤ |Pf |NΦ(Ω)|s|NΦ(Ω)

so that the statement follows. �

Remarks:

1. The space P mentioned in Theorem 5.14 is usually taken as a space of multivariate
polynomials.

2. For thin plate splines φ(r) = r2 log r, r = ‖x‖2 with x = (x, y) ∈ IR2, the
corresponding semi-norm in the Beppo-Levi space BL2(IR

2) is

|f |2
BL2(IR2)

=

∫

IR2

∣

∣

∣

∣

∂2f

∂x2
(x)

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∂2f

∂x∂y
(x)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂2f

∂y2
(x)

∣

∣

∣

∣

2

dx,

which is the bending energy of a thin plate, and thus explains the name of these
functions.
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Another nice property of the radial basis function interpolant is that it is at the
same time the best Hilbert-space approximation to the given data, and thus not just
any projection of f but the orthogonal projection. More precisely,

Theorem 5.15 Let

HΦ(X ) = {s =

N
∑

j=1

cjΦ(·,xj)+p | p ∈ P and

N
∑

j=1

cjq(xj) = 0 for all q ∈ P and xj ∈ X},

where Φ ∈ C(Ω × Ω) is a strictly conditionally positive definite kernel with respect to
the finite-dimensional space P ⊆ C(Ω) and X is P -unisolvent. If only the values f1 =
f(x1), . . . , fN = f(xN ) are given, then the interpolant Pf is the best approximation to
f from HΦ(X ) in NΦ(Ω), i.e.,

|f − Pf |NΦ(Ω) ≤ |f − s|NΦ(Ω)

for all s ∈ HΦ(X ).

Remarks:

1. The connection between radial basis function interpolation and the optimal re-
covery theory by Golomb and Weinberger was pointed out by various people (e.g.,
Schaback [167, 170], or Light and Wayne [118]).

2. These optimality properties of radial basis function interpolants play an impor-
tant role in applications such as in the design of support vector machines in
artificial intelligence or the numerical solutions of partial differential equations.

3. The optimality results above imply that one could also start with some Hilbert
space H with norm ‖ · ‖H and ask to find the minimum norm interpolant (i.e.,
Hilbert space best approximation) to some given data. In this way any given space
defines a set of optimal basis functions, generated by the reproducing kernel of H.
This is how Duchon approached the subject in his papers [44, 45, 46, 47]. More
recently, Kybic, Blu and Unser [106, 107] take this point of view and explain
very nicely from a sampling theory point of view how the thin plate splines can
be interpreted a fundamental solutions of the differential operator defining the
semi-norm in the Beppo-Levi space BL2(IR

2), and thus radial basis functions can
be viewed as Green’s functions.

A third optimality result is in the context of quasi-interpolation, i.e.,

Theorem 5.16 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite kernel
with respect to the finite-dimensional space P ⊆ C(Ω). Suppose X is P -unisolvent and
x ∈ Ω is fixed. Let u∗j (x), j = 1, . . . , N , be the cardinal basis functions for interpolation
with Φ. Then

∣

∣

∣

∣

∣

∣

f(x)−
N
∑

j=1

f(xj)u
∗
j (x)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

f(x)−
N
∑

j=1

f(xj)uj

∣

∣

∣

∣

∣

∣

for all choices of u1, . . . , uN ∈ IR with
∑N

j=1 ujp(xj) = p(x) for any p ∈ P .

33



Theorem 5.16 is proved in [205]. It says in particular that the minimum norm inter-
polant Pf is also more accurate (in the pointwise sense) than any linear combination
of the given data values.

6 Least Squares Approximation

As we saw in Section 5 we can interpret radial basis function interpolation as a con-
strained optimization problem. We now take this point of view again, but start with a
more general formulation. Let’s assume we are seeking a function Pf of the form

Pf(x) =
M
∑

j=1

cjΦ(x,xj), x ∈ IRs,

such that the quadratic form
1

2
cTQc (20)

with c = [c1, . . . , cM ]T and some symmetric positive definite matrix Q is minimized
subject to the linear constraints

Ac = f (21)

where A is an N ×M matrix, and the right-hand side f = [f1, . . . , fN ]T is given. Such
a constrained quadratic minimization problem can be converted to a system of linear
equations by introducing Lagrange multipliers, i.e., we consider finding the minimum
of

1

2
cTQc− λT [Ac− f ] (22)

with respect to c and λ = [λ1, . . . , λN ]T . Since Q is a positive definite matrix, it is well
known that the functional to be minimized is convex, and thus has a unique minimum.
Therefore, the standard necessary condition for such a minimum (which is obtained by
differentiating with respect to c and λ and finding the zeros of those derivatives) is
also sufficient. This leads to

Qc−AT λ = 0

Ac− f = 0

or, in matrix form,
[

Q −AT

A 0

] [

c

λ

]

=

[

0

f

]

.

By applying Gaussian elimination to this block matrix (Q is invertible since it is as-
sumed to be positive definite) we get

λ =
(

AQ−1AT
)−1

f (23)

c = Q−1AT
(

AQ−1AT
)−1

f . (24)
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In particular, if the quadratic form represents the native space norm of the inter-
polant Pf =

∑M
j=1 cjΦ(·,xj), i.e.,

‖Pf‖2NΦ(Ω) =
M
∑

i=1

M
∑

j=1

cicjΦ(xi,xj) = cTQc

with Qij = Φ(xi,xj) and c = [c1, . . . , cM ]T , and the linear side conditions are the
interpolation conditions

Ac = f ⇐⇒ Pf(xi) = fi, i = 1, . . . ,M,

with A = Q (symmetric) and the same c as above and data vector f = [f1, . . . , fM ]T ,
then we see that the Lagrange multipliers (23) become

λ = A−T f = A−1f

and the coefficients are given by
c = λ

via (24). Therefore, as we saw earlier, the minimum norm interpolant is obtained by
solving the interpolation equations alone.

Since we took the more general point of view that P is generated by M basis
functions, and N linear constraints are specified, the above formulation also covers
both over- and under-determined least squares fitting where the quadratic form cTQc

represents an added smoothing (or regularization) term. This term is not required to
obtain a unique solution of the system Ac = f in the over-determined case (M ≤ N),
but in the under-determined case such a constraint is needed (cf. the solution of under-
determined linear systems via singular value decomposition in the numerical linear
algebra literature (e.g., [193])).

Usually the regularized least squares approximation problem is formulated as min-
imization of

1

2
cTQc + ω

N
∑

j=1

(Pf(xj)− fj)
2 . (25)

The quadratic form controls the smoothness of the fitting function and the least squares
term measures the closeness to the data. The parameter ω controls the tradeoff between
these two terms. The formulation (25) is used in regularization theory (see, e.g., [52,
76]). The same formulation is also used in penalized least squares fitting (see, e.g.,
[78]), the literature on smoothing splines [160, 182], and in papers by Wahba on thin
plate splines (e.g., [195, 196]). In fact, the idea of smoothing a data fitting process
by this kind of formulation seems to go back to at least Whittaker [207] in 1923. In
practice a penalized least squares formulation is especially useful if the data fi cannot
be completely trusted, i.e., it is contaminated by noise. In this case, a (penalized) least
squares fit is advisable. The problem of minimizing (25) is known as ridge regression
in the statistics literature.

The equivalence with our formulation (22) above follows from

1

2
cTQc + ω

N
∑

j=1

(Pf(xj)− fj)
2 =

1

2
cTQc + ω[Ac− f ]T [Ac− f ]
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=
1

2
cTQc− λT [Ac− f ],

where
λ = −ω[Ac− f ].

We are now interested in the more general setting where we still sample the given
function f on the set X = {x1, . . . ,xN}, but now introduce a second set Ξ = {ξi}Mi=1

at which we center the basis functions. Usually we will have M ≤ N , and the case
M = N with Ξ = X recovers the traditional interpolation setting discussed thus far.
Therefore,

Qf(x) =

M
∑

j=1

cjΦ(x, ξj), x ∈ IRs, (26)

and the coefficients cj can be found by minimizing ‖Qf − f‖22, where the `2-norm

‖f‖22 =
N
∑

i=1

[f(xi)]
2

is induced by the discrete inner product

〈f, g〉 =
N
∑

i=1

f(xi)g(xi). (27)

This approximation problem has a unique solution if the (rectangular) collocation
matrix A with entries

Ajk = Φ(xj , ξk), j = 1, . . . , N, k = 1, . . . ,M,

has full rank.

Remarks:

1. If the centers in Ξ are chosen to form a subset of the data locations X then
A has full rank provided the radial basis function is selected according to our
previous sections on interpolation. This is true, since in this case A will have an
M×M square submatrix which is non-singular (by virtue of being an interpolation
matrix).

2. The over-determined linear system Ac = y which arises in the solution of the
least squares problem can be solved using standard algorithms from numerical
linear algebra such as QR or singular value decomposition.

In the following section we give a brief account of theoretical results known for the
general problem in which the centers and data sites differ.
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6.1 Theoretical Results

The results mentioned here are due to Sivakumar and Ward [187], and Quak, Sivakumar
and Ward [159]. The first paper deals with discrete least squares, the second with
continuous least squares approximation. In both papers the authors do not discuss the
collocation matrix A above, but rather base their results on the non-singularity of the
coefficient matrix obtained from a system of normal equations. In the discrete setting
they use the inner product (27) which induces the `2 norm, and then discuss non-
singularity of the Gramian which occurs in the following system of normal equations

Gc = w, (28)

where the entries of G are the `2 inner products of the radial basis functions, i.e.,

Gjk = 〈Φ(·, ξj),Φ(·, ξk)〉 =
N
∑

i=1

Φ(xi, ξj)Φ(xi, ξk), j, k = 1, . . . ,M,

and the right-hand side vector w in (28) is given by

wj = 〈Φ(·, ξj),f〉 =
N
∑

i=1

Φ(xi, ξj)f(xi), j = 1, . . . ,M.

Remarks:

1. Note that in the interpolation case with M = N and Ξ = X we have

〈Φ(·,xj),Φ(·,xk)〉 = 〈Φ(·,xj),Φ(·,xk)〉NΦ(Ω) = Φ(xj ,xk)

so that G is just the interpolation matrix A.

2. Of course, this also presents an interpretation of the interpolation matrix A as
the system matrix for the normal equations in the case of best approximation
with respect to the native space norm – a fact already mentioned earlier in the
section on optimal recovery.

In both papers, [187] as well as [159], even the formulation of the main theorems is
very technical. We therefore just try to give a feel for their results.

Essentially, the authors show that the Gramian for certain radial basis functions
(norm, (inverse) multiquadrics, and Gaussians) is non-singular if the centers ξk, k =
1, . . . ,M , are sufficiently well distributed and the data points xj , j = 1, . . . , N , are fairly
evenly clustered about the centers with the diameter of the clusters being relatively
small compared to the separation distance of the data points. Figure 2 illustrates the
clustering idea.

As a by-product of this argumentation the authors obtain a proof for the non-
singularity of interpolation matrices for the case in which the centers of the basis func-
tions are chosen different from the data sites, namely as small perturbations thereof.
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Figure 2: Clusters of data points ◦ around well separated centers •.

7 Moving Least Squares Approximation

An alternative to radial basis function interpolation and approximation is the so-called
moving least squares method. As we will see below, in this method the approximation
Pf to f is obtained by solving many (small) linear systems, instead of via solution of
a single – but large – linear system as we did in the previous sections.

To establish a connection with the previous sections we start with the Backus-
Gilbert formulation of the moving least squares method since this corresponds to a
linearly constrained quadratic minimization problem.

7.1 Moving Least Squares Approximation: The Backus-Gilbert Ap-
proach

The connection between the standard moving least squares formulation (to be ex-
plained in the next section) and Backus-Gilbert theory was pointed out by Bos and
Šalkauskas in [21]. Mathematically, in the Backus-Gilbert approach one considers a
quasi-interpolant of the form

Pf(x) =
N
∑

i=1

f(xi)Ψi(x), (29)

where f = [f(x1), . . . , f(xN )]T represents the given data. From Theorem 5.16 we know
that the quasi-interpolant that minimizes the point-wise error is given if the generating
functions Ψi are cardinal functions, i.e., Ψi(xj) = δij , i, j = 1, . . . , N .

In the moving least squares method one does not attempt to minimize the pointwise
error, but instead seeks to find the values of the generating functions Ψi(x) = Ψ(x,xi)
by minimizing

1

2

N
∑

i=1

Ψ2
i (x)

1

W (x,xi)
(30)

subject to the polynomial reproduction constraints

N
∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d, (31)

38



where Πs
d is the space of s-variate polynomials of total degree at most d which has

dimension m =
(

s+d
d

)

.

Remarks:

1. In the above formulation there is no explicit emphasis on nearness of fit as this is
implicitly obtained by the quasi-interpolation “ansatz” and the closeness of the
generating functions to the pointwise optimal delta functions. This is achieved by
the above problem formulation if the W (·,xi) are weight functions that decrease
with distance from the origin. Many of the radial functions used earlier are
candidates for the weight functions. However, strict positive definiteness is not
required, so that, e.g., (radial or tensor product) B-splines can also be used. The
polynomial reproduction constraint is added so that the quasi-interpolant will
achieve a desired approximation order. This will become clear in Section 7.4
below.

2. The smoothness functional (30) used here is also motivated by practical appli-
cations. In the Backus-Gilbert theory which was developed in the context of
geophysics (see [6]) it is desired that the generating functions Ψi are as close as
possible to the ideal cardinal functions (i.e., delta functions). Therefore, one needs
to minimize their “spread”. The polynomial reproduction constraints correspond
to discrete moment conditions for the function Ψ = Ψ(x, ·).

If we think of x as a fixed (evaluation) point, then we have another constrained
quadratic minimization problem of the form discussed in previous sections. The un-
knowns are collected in the “coefficient vector” Ψ(x) = [Ψ(x,x1), . . . ,Ψ(x,xN )]T . The
smoothness functional (30)

1

2
Ψ(x)TQ(x)Ψ(x)

is given via the diagonal matrix

Q(x) = diag

(

1

W (x,x1)
, . . . ,

1

W (x,xN )

)

, (32)

where W (·,xi) are positive weight functions (and thus for any x the matrix Q(x) is
positive definite).

The linear polynomial reproduction constraint (31) can be written in matrix form
as

AΨ(x) = p(x),

where A is the m × N matrix with entries Aji = pj(xi), i = 1, . . . , N , j = 1, . . . ,m,
and p = [p1, . . . , pm]T is a vector that contains a basis for the space Πs

d of polynomials
of degree d.

According to our earlier work we use Lagrange multipliers and then know that (cf.
(23) and (24))

λ(x) =
(

AQ−1(x)AT
)−1

p(x) (33)

Ψ(x) = Q−1(x)AT λ(x). (34)

39



Equation (33) implies that the Lagrange multipliers are obtained as the solution of a
Gram system

G(x)λ(x) = p(x),

where the entries of G are the weighted `2 inner products

Gjk(x) = 〈pj , pk〉W (x) =
N
∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m. (35)

The special feature here is that the weight varies with the evaluation point x.
Two short comments are called for. First, the Gram matrix is symmetric and

positive definite since the polynomial basis is linearly independent and the weights are
positive. Second, in practice, the polynomials will be represented in shifted form, i.e.,
centered at the point of evaluation x, so that only p1(x) ≡ 1 6= 0.

Equation (34) can be written componentwise, i.e., the generating functions in (29)
are given by

Ψi(x) = W (x,xi)
m
∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

Therefore, once the values of the Lagrange multipliers λj(x), j = 1, . . . , N , have been
determined we have explicit formulas for the values of the generating functions. In
general, however, finding the Lagrange multipliers involves solving a (small) linear
system that changes as soon as x changes.

7.2 Standard Interpretation of MLS Approximation

The standard interpretation of moving least squares method first appeared in the ap-
proximation theory literature in a paper by Lancaster and Šalkauskas [108] who also
pointed out the connection to earlier (more specialized) work by Shepard [185] and
McLain [129]. We now consider the following approximation problem. Assume we are
given data values f(xi), i = 1, . . . , N , on some set X = {x1, . . . ,xN} ⊂ IRs of dis-
tinct data sites, where f is some (smooth) function, as well as an approximation space
U = span{u1, . . . , um} (with m < N), along with the same weighted `2 inner product

〈f, g〉W (x) =
N
∑

i=1

f(xi)g(xi)Wi(x), x ∈ IRs fixed, (36)

as introduced above in (35). Again, the positive weights Wi, i = 1, . . . , N , depend on
the evaluation point x. We will interpret the weight functions in a way similar to radial
basis functions, i.e., Wi(x) = W (x,xi), with the points xi coming from the set X .

We now wish to find the best approximation from U to f at the point x with respect
to the norm induced by (36). This means we will obtain the approximation (at the
point x) as

Pf(x) =
m
∑

j=1

cj(x)uj(x), (37)
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where the coefficients cj(x) are such that

N
∑

i=1

[Pf(xi)− f(xi)]
2Wi(x) (38)

is minimized. Due to the definition of the inner product (36) whose weight function
“moves” with the evaluation point x, the coefficients cj in (37) depend also on x. As
a consequence one has to solve the normal equations

m
∑

j=1

cj(x)〈uj , uk〉W (x) = 〈f, uk〉W (x), k = 1, . . . ,m, (39)

anew each time the evaluation point x is changed. In matrix notation (39) becomes

G(x)c(x) = fu(x), (40)

with the positive definite Gram matrix G(x) =
(

〈uj , uk〉W (x)

)m

j,k=1
, coefficient vector

c(x) and right-hand side vector fu(x) as in (39) all depending on x.
In the moving least squares method one usually takes U to be a space of (multi-

variate) polynomials, i.e.,

Pf(x) =
m
∑

j=1

cj(x)pj(x), x ∈ IRs, (41)

where the {p1, . . . , pm} is a basis for the space Πs
d of s-variate polynomials of degree d.

The Gram system (40) now becomes

G(x)c(x) = fp(x), (42)

where the matrix G(x) has entries

Gjk(x) = 〈pj , pk〉W (x) =
N
∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m, (43)

and the right-hand side vector consists of the projections of the data f onto the basis
functions, i.e.,

fp(x) =
[

〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
.

Remarks:

1. The fact that the coefficients depend on the evaluation point x, and thus for every
evaluation of Pf a Gram system (with different matrix G(x)) needs to be solved,
initially scared people away from the moving least squares approach. However,
one can either choose compactly supported weight functions so that only a few
terms are “active” in the sum in (43), or even completely avoid the solution of
linear systems (see, e.g., [60]).

41



2. We point out that since we are working with a polynomial basis, the matrix G
can also be interpreted as a moment matrix for the weight W . This interpretation
is used in the engineering literature (see, e.g., [116]), and also plays an essential
role when connecting moving least squares approximation to the more efficient
concept of approximate approximation [127]. For a discussion of approximate
moving least squares approximation see [61, 62, 63, 64].

The connection to the constrained quadratic minimization problems discussed ear-
lier can be seen as follows. We are now minimizing (for fixed x)

1

2
cT (x)G(x)c(x)− µT (x)

[

G(x)c(x)−AQ−1(x)f
]

, (44)

where G(x) is the Gram matrix (35), Q(x) the diagonal matrix of weight functions
(32) and A the matrix of polynomials used earlier. The term AQ−1(x)f corresponds
to the right-hand side vector f p(x) of (42). The solution of the linear system resulting
from the minimization problem (44) gives us

µ(x) =
(

G(x)G−1(x)GT (x)
)−1

AQ−1(x)f = G−T (x)AQ−1(x)f

c(x) = G−1(x)GT (x)µ(x) = µ(x)

so that – as in the case of radial basis function interpolation – by solving only the Gram
system G(x)c(x) = fp(x) we automatically minimize the functional

cT (x)G(x)c(x) =
m
∑

j=1

m
∑

k=1

cj(x)ck(x)Gjk(x)

=
m
∑

j=1

m
∑

k=1

cj(x)ck(x)〈pj , pk〉W (x)

which should be interpreted as the native space norm of the approximant Pf(x) =
m
∑

j=1

cj(x)pj(x).

Since one can show that the two approaches are equivalent the moving least squares
approximant has all of the following properties:

• It reproduces any polynomial of degree at most d in s variables exactly.

• It produces the best locally weighted least squares fit.

• Viewed as a quasi-interpolant, the generating functions Ψi are as close as possible
to the optimal cardinal basis functions in the sense that (30) is minimized.

• Since polynomials are infinitely smooth, either of the representations of Pf shows
that its smoothness is determined by the smoothness of the weight function(s)
Wi(x) = W (x,xi).
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In particular, the standard moving least squares method will reproduce the poly-
nomial basis functions p1, . . . , pm even though this is not explicitly enforced by the
minimization (solution of the normal equations). Moreover, the more general “ansatz”
with approximation space U allows us to build moving least squares approximations
that also reproduce any other function that is included in U . This can be very beneficial
for the solution of partial differential equations with known singularities (see, e.g., the
papers [5] by Babuška and Melenk, and [17] by Belytschko and co-authors).

7.3 An Example: Shepard’s Method

The moving least squares method in the case m = 1 with p1(x) ≡ 1 is known to yield
Shepard’s method [185]. In the statistics literature Shepard’s method is known as a
kernel method (see, e.g., the papers from the 1950s and 60s [162, 153, 145, 198]). Using
our notation we have

Pf(x) = c1(x).

The Gram “matrix” consists of only one element

G(x) = 〈p1, p1〉W (x) =
N
∑

i=1

W (x,xi)

so that G(x)c(x) = f p(x) implies

c1(x) =

N
∑

i=1

f(xi)W (x,xi)

N
∑

i=1

W (x,xi)

.

The values of the Lagrange multiplier can be found from G(x)λ(x) = p(x) so that

λ1(x) =
1

N
∑

i=1

W (x,xi)

.

Finally, the generating functions are defined as

Ψi(x) = W (x,xi)λ1(x)p1(xi) =
W (x,xi)

N
∑

i=1

W (x,xi)

.

This gives rise to the well-known quasi-interpolation formula for Shepard’s method

Pf(x) =
N
∑

i=1

f(xi)Ψi(x) =
N
∑

i=1

f(xi)
W (x,xi)

N
∑

k=1

W (x,xk)

.
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Of course this is the same as the basis expansion c1(x).
It is interesting to note that the polynomial basis function and the Lagrange mul-

tiplier are orthogonal on the data, i.e., 〈λ1, p1〉W (x) = 1. Indeed

〈λ1, p1〉W (x) =
m
∑

i=1

λ1(xi)W (x,xi)

=
N
∑

i=1

W (x,xi)
N
∑

k=1

W (xi,xk)

,

and this equals 1 if we restrict x to be an element of the set X . This fact can be shown
to hold for higher-order MLS methods also.

7.4 Approximation Order of Moving Least Squares

Since the moving least squares approximants can be written as quasi-interpolants, we
can use standard techniques to derive their point-wise error estimates. The standard
argument proceeds as follows. Let f be a given (smooth) function that generates the
data, i.e., f1 = f(x1), . . . , fN = f(xN ), and let p be an arbitrary polynomial. Moreover,
assume that the moving least squares approximant is given in the form

Pf(x) =
N
∑

i=1

f(xi)Ψi(x)

with the generating functions Ψi satisfying the polynomial reproduction property

N
∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d,

as described at the beginning of this section. Then, due to the polynomial reproduction
property of the generating functions,

|f(x)− Pf(x)| ≤ |f(x)− p(x)|+ |p(x)−
N
∑

i=1

f(xi)Ψi(x)|

= |f(x)− p(x)|+ |
N
∑

i=1

p(xi)Ψi(x)−
N
∑

i=1

f(xi)Ψi(x)|

≤ |f(x)− p(x)|+
N
∑

i=1

|p(xi)− f(xi)||Ψi(x)|

≤ ‖f − p‖∞
[

1 +

N
∑

i=1

|Ψi(x)|
]

. (45)

We see that in order to refine the error estimate we now have to answer two questions:
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• How well do polynomials approximate f? This will be done with standard Taylor
expansions.

• Are the generating functions bounded? The expression
N
∑

i=1

|Ψi(x)| is known as

the Lebesgue function, and finding a bound for the Lebesgue function is the main
task that remains.

By taking the polynomial p above to be the Taylor polynomial for f at x of total
degree d, the remainder term immediately yields an estimate of the form

‖f − p‖∞ ≤ C1h
d+1 max

x∈Ω
|Dαf(x)|, |α| = d+ 1,

= C1h
d+1|f |d+1, (46)

where we have used the abbreviation

|f |d+1 = max
x∈Ω
|Dαf(x)|, |α| = d+ 1.

Thus, if we can establish a uniform bound for the Lebesgue function, then (45) and
(46) will result in

|f(x)− Pf(x)| ≤ Chd+1|f |d+1

which shows that moving least squares approximation with polynomial reproduction
of degree d has approximation order O(hd+1).

For Shepard’s method, i.e., moving least squares approximation with constant re-
production (i.e., m = 1 or d = 0), we saw above that the generating functions are of
the form

Ψi(x) =
W (x,xi)

N
∑

j=1

W (x,xj)

and therefore the Lebesgue function admits the uniform bound

N
∑

i=1

|Ψi(x)| = 1,

This shows that Shepard’s method has approximation order O(h).
Bounding the Lebesgue function in the general case is more involved and is the

subject of the papers [113] by Levin and [204] by Wendland. This results in approxi-
mation order O(hd+1) for a moving least squares method that reproduces polynomials
of degree d. In both papers the authors assumed that the weight function is compactly
supported, and that the support size is scaled proportional to the fill distance. How-
ever, similar estimates should be possible if the weight function only decays fast enough
(see, e.g., the survey by de Boor [20]).

Aside from this consideration, the choice of weight function W does not play a role
in determining the approximation order of the moving least squares method. As noted
earlier, it only determines the smoothness of Pf . For example, in the paper [37] from
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the statistics literature on local regression the authors state that often “the choice [of
weight function] is not too critical”, and the use of the so-called tri-cube

W (x,xi) = (1− ‖x− xi‖3)3+, x ∈ IRs,

is suggested. Of course, many other weight functions such as (radial) B-splines or any
of the (bell-shaped) radial basis functions studied earlier can also be used. If the weight
function is compactly supported, then the generating functions Ψi will be so, too. This
leads to computationally efficient methods since the Gram matrix G(x) will be sparse.

An interesting question is also the size of the support of the different local weight
functions. Obviously, a fixed support size for all weight functions is possible. How-
ever, this will cause serious problems as soon as the data are not uniformly distributed.
Therefore, in the arguments in [113] and [204] the assumption is made that the data
are at least quasi-uniformly distributed. Another choice for the support size of the in-
dividual weight functions is based on the number of nearest neighbors, i.e., the support
size is chosen so that each of the local weight functions contains the same number of
centers in its support. A third possibility is suggested by Schaback [174]. He proposes
to use another moving least squares approximation based on (equally spaced) auxiliary
points to determine a smooth function δ so that at each evaluation point x the radius
of the support of the weight function is given by δ(x). However, convergence estimates
for these latter two choices do not exist.

Sobolev error estimates are provided for moving least squares approximation with
compactly supported weight functions in [1]. The rates obtained in that paper are not
in terms of the fill distance but instead in terms of the support size R of the weight
function. Moreover, it is assumed that for general s and m =

(

s+d
d

)

the local Lagrange
functions are bounded. As mentioned above, this is the hard part, and such bounds
are only provided in the case s = 2 with d = 1 and d = 2 in [1]. However, if combined
with the general bounds for the Lebesgue function provided by Wendland the paper
[1] yields the following estimates:

|f(x)− Pf(x)| ≤ CRd+1|f |d+1

but also
|∇(f − Pf)(x)| ≤ CRd|f |d+1.

In the weaker L2-norm we have

‖f − Pf‖L2(Bj∩Ω) ≤ CRd+1|f |W d+1
2 (Bj∩Ω)

and
‖∇(f − Pf)‖L2(Bj∩Ω) ≤ CRd|f |W d+1

2 (Bj∩Ω),

where the balls Bj provide a finite cover of the domain Ω, i.e., Ω ⊆ ⋃j Bj , and the
number of overlapping balls is bounded.

Remarks:

1. In the statistics literature the moving least squares idea is known as local (poly-
nomial) regression. There is a book by Fan and Gijbels [53] and a review article
by Cleveland and Loader [37] according to which the basic ideas of local regres-
sion can be traced back at least to work of Gram [80], Woolhouse [210], and De
Forest [38, 39] from the 1870s and 1880s.
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2. In particular, in the statistics literature one learns that the use of least squares
approximation is justified when the data f1, . . . , fN are normally distributed,
whereas, if the noise in the data is not Gaussian, then other criteria should be
used. See, e.g., the survey article [37] for more details.

3. Early error estimates for some special cases were provided by Farwig in [54, 55].

8 Some Issues Related to Practical Implementations

In this section we will collect some information about issues that are important for
the practical use of radial basis function and moving least squares methods. These
issues include stability and conditioning of radial basis function interpolants, the trade-
off principle which explains the trade-off between achievable convergence rates and
numerical stability or efficiency, as well as algorithms for fast solution and evaluation
of radial basis interpolants and moving least squares approximants.

8.1 Stability and Conditioning of Radial Basis Function Interpolants

A standard criterion to measure the numerical stability of an approximation method
is its condition number. In particular, for radial basis function interpolation we need
to look at the condition number of the interpolation matrix A with entries Aij =
Φ(xi − xj). For any matrix A the `2-condition number of A is given by

cond(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
,

where σmax and σmin are the largest and smallest singular values of A. If we concentrate
on positive definite matrices A, then we can also take the ratio

λmax

λmin

of largest and smallest eigenvalues as an indicator for the condition number of A.
What do we know about these eigenvalues? First, Gershgorin’s Theorem says that

|λmax −Aii| ≤
N
∑

j=1
j 6=i

|Aij |.

Therefore,
λmax ≤ N max

i,j=1,...,N
|Aij | = N max

xi,xj∈X
Φ(xi − xj),

which, since Φ is strictly positive definite, becomes

λmax ≤ NΦ(0).

Now, as long as the data are not too wildly distributed, N will grow as h−s
X ,Ω which

is acceptable. Therefore, the main work in establishing a bound for the condition
number of A lies in finding lower bounds for λmin (or correspondingly upper bounds
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for the norm of the inverse ‖A−1‖2). This is the subject of several papers by Ball,
Narcowich, Sivakumar and Ward [8, 147, 148, 149, 150] who make use of a result by
Ball [7] on eigenvalues of distance matrices. Ball’s result follows from the Rayleigh
quotient, which gives the smallest eigenvalue of a positive definite matrix as

λmin = inf
c∈IRN \0

cTAc

cT c
.

This leads to the following bound for the norm of the inverse of A.

Lemma 8.1 Let x1, . . . ,xN , be distinct points in IRs and let Φ : IRs → IR be either
strictly positive definite or strictly conditionally negative definite of order one with
Φ(0) ≤ 0. Also, let A be the interpolation matrix with entries Aij = Φ(xi −xj). If the
inequality

N
∑

i=1

N
∑

j=1

cicjAij ≥ θ‖c‖22

is satisfied whenever the components of c satisfy
∑N

j=1 cj = 0, then

‖A−1‖2 ≤ θ−1.

Note that for positive definite matrices the Rayleigh quotient implies θ = λmin which
shows why lower bounds on the smallest eigenvalue correspond to to upper bounds on
the norm of the inverse of A. In order to obtain the bound for conditionally negative
matrices the Courant-Fischer Theorem needs to be employed.

Narcowich and Ward establish bounds on the norm of the inverse of A in terms of
the separation distance of the data sites

qX =
1

2
min
i6=j
‖xi − xj‖2.

We can picture qX as the radius of the largest ball that can be placed around every
point in X such that no two balls overlap (see Figure 3).

q

Figure 3: The separation distance qX for a set of data sites in IR2.

The derivation of these bounds is rather technical, and for details we refer to either
the original papers by Narcowich, Ward and co-workers, the more recent paper [175]
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by Schaback (who uses a slightly simpler strategy), or Wendland’s manuscript [205].
We now list several bounds as derived in [205].

Examples: In the examples below the explicit constants

Ms = 12

(

πΓ2( s+2
2 )

9

)1/(s+1)

≤ 6.38s and Cs =
1

2Γ( s+2
2 )

(

Ms√
8

)s

are used. The upper bound for Ms can be obtained using Stirling’s formula (see, e.g.,
[205]).

1. For Gaussians Φ(x) = e−α‖x‖2
one obtains

λmin ≥ Cs(2α)−s/2e−40.71s2/(q2
Xα)q−s

X .

2. For (inverse) multiquadrics Φ(x) =
(

‖x‖2 + α2
)β

, β ∈ IR \ IN0 one obtains

λmin ≥ C(α, β, s)q
β− s

2
+ 1

2
X e−2αMs/qX

with another explicitly known constant C(α, β, s).

3. For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN, one obtains

λmin ≥ Csck(2Ms)
−s−2kq2k

X

with another explicitly known constant ck.

4. For the powers Φ(x) = (−1)dβ/2e‖x‖β, β > 0, β /∈ 2 IN, one obtains

λmin ≥ Cscβ(2Ms)
−s−βqβ

X

with another explicitly known constant cβ.

5. For the compactly supported functions Φs,k(x) = ϕs,k(‖x‖) of Section 4 one
obtains

λmin ≥ C(s, k)q2k+1
X

with a constant C(s, k) depending on s and k.

By providing matching lower bounds for ‖A−1‖2 Schaback [168] showed that the
upper bounds on the norm of the inverse obtained earlier by Narcowich, Ward and
others are near optimal.

For the infinitely smooth functions of Examples 1 and 2 we see that, for a fixed shape
parameter α, the lower bound for λmin goes exponentially to zero, and therefore the
condition number of the interpolation matrix A grows exponentially, as the separation
distance qX decreases. This shows that, if one adds more interpolation points in order
to improve the accuracy of the interpolant (within the same domain Ω), then the
problem becomes increasingly ill-conditioned. Of course one would always expect this
to happen, but here the ill-conditioning grows primarily due to the decrease in the

49



separation distance qX , and not to the increase in the number N of data points. We will
come back to this observation when we discuss a possible change of basis in Section 8.4.

On the other hand, if one keeps the number of points (or at least the separation
distance) fixed and instead increases (reduces) the value of α for Gaussians (multi-
quadrics), then the condition number of A is improved. This corresponds to the sta-
tionary approximation setting (which we did not discuss in detail earlier). In this case
it is possible to show that the upper bound for the error estimate increases, i.e., the
accuracy of the interpolant deteriorates. Conversely, one can attempt to improve the
accuracy of a radial basis function interpolant by decreasing (increasing) α for Gaus-
sians (multiquadrics). However, this is only possible at the cost of numerical instability
(ill-conditioning of A). This is to be expected since for small (large) values of α the
Gaussians (multiquadrics) more and more resemble a constant function, and therefore
the rows (as well as columns) of the matrix A become more and more alike, so that the
matrix becomes almost singular – even for well separated data sites. In the literature
this phenomenon has been referred to as trade-off or (uncertainty) principle (see, e.g.,
the paper [169] by Schaback).

This trade-off has led a number of people to search for an “optimal” value of the
shape parameter, i.e., a value that yields maximal accuracy, while still maintaining
numerical stability. For example, in his original work on (inverse) multiquadric in-
terpolation in IR2 Hardy [83] suggested using α = 0.815d, where d = 1

N

∑N
i=1 di, and

di is the distance from xi to its nearest neighbor. Later Franke [74] suggested using
α = 1.25 D√

N
, where D is the diameter of the smallest circle containing all data points.

Foley [70] based his strategy for finding a good value for α on the observation that that
good value was similar for multiquadrics and inverse multiquadrics. Other studies were
reported in [28] and [29]. A more recent algorithm was proposed by Rippa in [161]. He
suggests a variant of cross validation known as “leave-one-out” cross validation. This
method is rather popular in the statistics literature where it is also known as PRESS
(Predictive REsidual Sum of Squares). In this algorithm an “optimal” value of α is
selected by minimizing the least squares error for a fit based on the data for which one
of the centers was “left out”. A similar strategy was proposed earlier in [77] for the
solution of elliptic partial differential equations via the dual reciprocity method based
on multiquadric interpolation.

More recently, Fornberg and co-workers have investigated the dependence of the sta-
bility on the values of the shape parameter α in a series of papers (e.g., [40, 71, 111]).
On the one hand, they suggest a way of stably computing very accurate (inverse)
multiquadric and Gaussian interpolants (with extreme values of α) by using a complex
Contour-Padé integration algorithm. This algorithm is rather expensive, and so far only
applicable for problems involving no more than 100 centers. On the other hand, Forn-
berg and co-workers as well as Schaback [176] have shown that in the limiting case of
the shape parameter α, i.e., with very “flat” basis functions, the infinitely smooth radial
basis function interpolants approach multivariate polynomial interpolants. Therefore,
Fornberg and his co-workers suggest using radial basis functions as a generalization of
spectral methods (applicable also in the case of scattered data) for the numerical solu-
tion of partial differential equations. This approach was also taken recently by Sarra
[166].

There is also a trade-off principle for compactly supported functions. This was
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Mesh `2-error rate % nonzero time

3× 3 2.367490e-01 100 0
5× 5 6.572754e-02 1.849 57.8 0
9× 9 1.740723e-02 1.917 23.2 0

17× 17 2.362950e-03 2.881 7.47 1
33× 33 2.060493e-03 0.198 2.13 1
65× 65 2.012010e-03 0.034 0.06 11

129× 129 2.007631e-03 0.003 0.01 158

Table 1: 2D stationary interpolation with ϕ(r) = (1−r)4
+(4r+1), 25 points in support.

explained theoretically as well as illustrated with numerical experiments by Schaback
[171]. The consequences are as follows. In the case of stationary interpolation, i.e.,
if we scale the support size of the basis functions proportional to the fill distance
hX ,Ω, then the “bandwidth” of the interpolation matrix A is constant. This means
we can apply numerical algorithms (e.g., conjugate gradient) that can be performed
in O(N) computational complexity. The method is numerically stable, but there will
be essentially no convergence (see Table 1). In the non-stationary case, i.e., with
fixed support size, the bandwidth of A increases as hX ,Ω decreases. This results in
convergence (i.e., the error decreases) as we showed in Section 5, but the interpolation
matrices will become more and more dense as well as ill-conditioned. Therefore, this
approach is not very efficient (see Table 2).

In Tables 1 and 2 we illustrate this behavior. We use the compactly supported
function ϕ3,1(r) = (1− r)4+ (4r + 1) to interpolate Franke’s function

F (x, y) =
3

4

[

exp

(

−(9x− 2)2

4
− (9y − 2)2

4

)

+ exp

(

−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(

−(9x− 7)2

4
− (9y − 3)2

)

− 1

5
exp

(

−(9x− 4)2 − (9y − 7)2
)

on a grid of equally spaced points in the unit square [0, 1]2. In the stationary case
(Table 1) the support of the basis function is scaled to contain 25 grid points. Therefore,
the “bandwidth” of the interpolation matrix A is kept constant (at 25), so that A is
very sparse for finer grids. We can observe convergence for the first few iterations, but
once an `2-error of approximately 2×10−3 is reached, there is no further improvement.
This behavior is not yet fully understood. However, it is similar to what happens in
the approximate approximation method of Maz’ya (see, e.g., [127]). The rate listed in
the table is the exponent β of the observed `2-convergence rate O(hβ). The % nonzero
column indicates the sparsity of the interpolation matrices, and the time is measured
in seconds.

In the non-stationary case (Table 2) we used the basis function without adjusting
its support size. This is the situation to which the error bounds of Section 5 apply.
We have convergence – although it is not obvious what the rate might be. However,
the matrices become increasingly dense. Therefore, Table 2 is missing the entry for the
129× 129 case, and even though no times are provided in that table, the time for the
65× 65 case is already more than 20 minutes on a standard desktop PC.
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Mesh `2-error rate

3× 3 2.407250e-01
5× 5 7.101748e-02 1.761
9× 9 1.833534e-02 1.954

17× 17 1.392914e-03 3.718
33× 33 3.050789e-04 2.191
65× 65 9.314516e-06 5.034

Table 2: 2D non-stationary interpolation with ϕ(r) = (1− r)4
+(4r + 1), unit support.

8.2 Multilevel Interpolation and Approximation

In order to overcome the problems with both approaches for interpolation with com-
pactly supported radial functions described above, Schaback suggested using a multi-
level stationary scheme. This scheme was implemented first by Floater and Iske [69] and
later studied by a number of other researchers (see, e.g., [32, 65, 82, 86, 96, 146, 202].

The basic idea of the multilevel interpolation algorithm is to scale the size of the
support of the basis function with hX ,Ω, but to interpolate to residuals on progressively
refined sets of centers. This method has all of the combined benefits of the methods
described earlier: it is computationally efficient (can be performed in O(N) operations),
well-conditioned, and convergent.

An algorithm for multilevel interpolation is as follows:

Algorithm: (Multilevel interpolation)

1. Create nested point sets X1 ⊂ · · · ⊂ XK = X ⊂ IRs, and initialize Pf(x) = 0.

2. For k = 1, 2, . . . ,K do

(a) Solve u(x) = f(x)− Pf(x) on Xk.

(b) Update Pf(x) = Pf(x) + u(x).

The representation of the update u at step k is of the form

u(x) =
∑

xj∈Xk

c
(k)
j ϕ

(‖x− xj‖
ρk

)

with ρk ' hXk,Ω. This requires the solution of a linear system whose size is determined
by the number of points in Xk.

In the numerical example listed in Table 3 we again use the compactly supported
function ϕ3,1(r) = (1− r)4+ (4r + 1) and Franke’s function.

The initial scale ρ1 was chosen so that the basis function was supported on [−2, 2].
Subsequent scales were successively divided by 2 – just as the fill distance of the com-
putational grids Xk. The rate listed in the table is the exponent β of the observed
`2-convergence rate O(hβ). The % nonzero column indicates the sparsity of the inter-
polation matrices, and the time is measured in seconds.

So far there are only limited theoretical results concerning the convergence of this
multilevel algorithm. Narcowich, Schaback and Ward [146] show that a related algo-
rithm (in which additional boundary conditions are imposed) converges at least linearly,
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Mesh `2-error rate % nonzero time

3× 3 2.367490e-01 100 0
5× 5 6.665899e-02 1.828 57.8 0
9× 9 2.087575e-02 1.675 23.2 0

17× 17 1.090837e-04 4.258 7.47 0
33× 33 1.497227e-04 2.865 2.13 6
65× 65 5.313053e-05 1.495 0.06 37

129× 129 1.112638e-05 2.256 0.01 212

Table 3: 2D (stationary) multilevel interpolation with ϕ(r) = (1− r)4
+(4r + 1).

and Hartmann analyzed the multilevel algorithm in his Ph.D. thesis [86]. He showed
at least linear convergence for multilevel interpolation on a regular lattice for various
radial basis functions. Similar results are obtained by Hales and Levesley [82] for poly-
harmonic splines, i.e., thin plate splines and powers. The main difficulty in proving
the convergence of the multilevel algorithm is the fact that the approximation space
changes from one level to the next. The approximation spaces are not nested (as they
usually are for wavelets). This means that the native space norm changes from one
level to the next. Hales and Levesley avoid this problem by scaling the (uniformly
spaced) data instead of the basis functions. Then the fact that polyharmonic splines
are in a certain sense harmonic (see Section 8.4) simplifies the analysis. This fact was
also used by Wendland [205] to prove linear convergence for multilevel (scattered data)
interpolation based on thin plate splines.

The same basic multilevel algorithm can also be used for other approximation meth-
ods. In [61] the idea was applied to moving least squares methods and approximate
moving least squares methods. Tables 4 and 5 illustrate the effect of the multilevel algo-
rithm for Shepard’s method and a moving least squares approximation with linear preci-
sion, both based on the compactly supported weight function ϕ3,1(r) = (1−r)4+(4r+1).
This experiment was conducted with a mollified Franke function f on the unit square
[0, 1]2, i.e.,

F (x, y) =
3

4

[

exp

(

−(9x− 2)2

4
− (9y − 2)2

4

)

+ exp

(

−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(

−(9x− 7)2

4
− (9y − 3)2

)

− 1

5
exp

(

−(9x− 4)2 − (9y − 7)2
)

,

f(x, y) = 15 exp

( −1

1− 4(x− 1/2)2

)

exp

( −1

1− 4(y − 1/2)2

)

F (x, y) .

The support scaling was as in the previous multilevel example.
One can observe that the basic Shepard’s method actually performs much better

than the predicted O(h) (see Table 4). Notice that the multilevel algorithm (illustrated
in Table 5) improves the accuracy considerably at very little extra cost. It is interesting
to note that this effect is much more pronounced for computations in IR2 than in IR
(cf. [60]). The times listed in Tables 4 and 5 are due only to the evaluation on a very
fine evaluation mesh since the method was coded so that no linear systems had to be
solved. This means that the Lagrange multipliers for the case of linear precision were
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Mesh Shepard linear precision

`2-error rate time `2-error rate time

3× 3 2.737339e-01 7 2.749670e-01 14
5× 5 1.100713e-01 1.314 7 1.033060e-01 1.412 13
9× 9 5.393041e-02 1.029 5 5.242492e-02 0.979 9

17× 17 1.507797e-02 1.839 3 1.502361e-02 1.803 5
33× 33 4.124059e-03 1.870 3 4.111092e-03 1.870 4
65× 65 1.061904e-03 1.957 2 1.047348e-03 1.973 3

129× 129 2.628645e-04 2.014 2 2.628645e-04 1.994 3

Table 4: 2D MLS approximation with weight ϕ(r) = (1− r)4
+(4r + 1).

Mesh Shepard linear precision

`2-error rate time `2-error rate time

3× 3 2.737339e-01 7 2.749670e-01 14
5× 5 1.076424e-01 1.347 7 1.013114e-01 1.440 12
9× 9 3.909725e-02 1.461 5 4.308322e-02 1.234 9

17× 17 7.327282e-03 2.416 3 8.549613e-03 2.333 6
33× 33 9.545860e-04 2.940 2 8.937409e-04 3.258 4
65× 65 1.424136e-04 2.745 2 9.896052e-05 3.175 3

129× 129 3.946680e-05 1.851 2 1.361339e-05 2.872 2

Table 5: 2D multilevel MLS approximation with ϕ(r) = (1− r)4
+(4r + 1).

determined explicitly by solving the 3 × 3 Gram system analytically (cf. (33)). The
resulting generating functions 34) were directly coded into the program.

This type of multilevel (and also multiscale) moving least squares method is at the
heart of the meshfree method for the nanomechanics application mentioned at the end
of Section 9.

There seems to be no theoretical investigation of the convergence properties of the
multilevel algorithm for moving least squares approximation.

8.3 Preconditioning

In the first part of this section we noted that the system matrices arising in scattered
data interpolation with radial basis functions tend to become very ill-conditioned as
the minimal separation distance qX between the data sites x1, . . . ,xN , is reduced.
Therefore it is natural to devise strategies to prevent such instabilities by either pre-
conditioning the system, or by finding a better basis for the approximation space we
are using. The former approach is standard procedure in numerical linear algebra,
and in fact we can use any of the well-established methods (such as preconditioned
conjugate gradient iteration) to improve the stability and convergence of the interpola-
tion systems that arise for strictly positive definite functions. In particular, the sparse
systems that arise in (multilevel) interpolation with compactly supported radial basis
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functions can be efficiently solved with the preconditioned conjugate gradient method,
and in fact the examples reported in the previous section were implemented using the
conjugate gradient method with a diagonal (Jacobi) preconditioner.

The idea of using a more stable basis is well known from univariate polynomial and
spline interpolation. The Lagrange basis functions for univariate polynomial interpola-
tion are of course the ideal basis if we are interested in stably solving the interpolation
equations since the resulting interpolation matrix is the identity matrix (which is cer-
tainly much better conditioned than, e.g., the Vandermonde matrix that we get if we
use a monomial basis). Similarly, B-splines give rise to diagonally dominant, sparse
system matrices which are much easier to deal with than the matrices we would get if
we were to represent a spline interpolant using the alternative truncated power basis.
Both of these examples are studied in great detail in standard numerical analysis texts
(see, e.g., [103]) or in the literature on splines (see, e.g., [183]). We will address an
analogous approach for radial basis functions in the next subsection.

8.3.1 Early Preconditioners

Ill-conditioning of the interpolation matrices was identified as a serious problem very
early, and Nira Dyn along with some of her co-workers (see, e.g., [48], [49], [50], or [51])
provided some of the first preconditioning strategies tailored especially to radial basis
functions.

For the following discussion we consider the general interpolation problem which
includes polynomial reproduction. Therefore, we have to solve the following system of
linear equations

[

A P
P T 0

] [

c

d

]

=

[

y

0

]

, (47)

with the individual pieces given by Ajk = ϕ(‖xj − xk‖), j, k = 1, . . . , N , Pj` = p`(xj),
j = 1, . . . , N , ` = 1, . . . ,M , c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y = [y1, . . . , yN ]T ,
and 0 a zero vector of length M with M = dimΠs

m−1. Here, as discussed earlier, ϕ
should be strictly conditionally positive definite of order m and radial on IRs and the
set X = {x1, . . . ,xN} should be (m− 1)-unisolvent.

The preconditioning scheme proposed by Dyn and her co-workers is motivated by
the fact that the polyharmonic splines

ϕ(r) =

{

r2k−s log r, s even,
r2k−s, s odd,

2k > s, are fundamental solutions of the k-th iterated Laplacian in IRs, i.e.,

∆kϕ(‖x‖) = cδ0(x),

where δ0 is the Dirac delta function, and c is an appropriate constant.
One now wants to discretize the Laplacian on the (irregular) mesh given by the

(scattered) data sites in X . To this end Dyn, Levin, and Rippa [51] suggest a procedure
that is based on a discretization of the Laplacian on the Delaunay triangulation of the
scattered centers for the interpolation problem in IR2. However, in order to also take
into account the special role of the boundary points Dyn, Levin and Rippa instead use
a discretization of an iterated Green’s formula which has the space Π2

m−1 as its null
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space. The necessary partial derivatives are then approximated on the triangulation
using certain sets of vertices of the triangulation (3 points for first order partials, 6 for
second order).

The discretization described above yields a matrix B = (bji)
N
j,i=1 as the precondi-

tioning matrix. We now obtain

(BA)jk =
N
∑

i=1

bjiϕ(‖xi − xk‖) ≈ ∆mϕ(‖ · −xk‖)(xj), j, k = 1, . . . , N, (48)

which has the property that the entries close to the diagonal are large compared to
those away from the diagonal, which decay to zero as the distance between the two
points involved goes to infinity. Since the part BP = 0 by construction, one must now
solve the system

BAc = By

P T c = 0.

Actually, the system BAc = By is singular, but it is shown in the paper [51] that the
additional constraints P T c = 0 guarantee existence of a unique solution. Furthermore,
the coefficients d in the original expansion of the interpolant s can be obtained by
solving

Pd = y −Ac,

i.e., by fitting the polynomial part of the expansion to the residual y −Ac.
The approach just described leads to localized basis functions ψ which are linear

combinations of the original basis functions ϕ. More precisely,

ψj(x) =

N
∑

i=1

bjiϕ(‖x− xi‖) ≈ ∆mϕ(‖ · −xj‖)(x), (49)

where the coefficients bji are those determined by the discretization above.
The localized basis functions ψj , j = 1, . . . , N , (see (49)) can be viewed as an alter-

native (better conditioned) basis for the approximation space spanned by the functions
ϕj = ϕ(‖ · −xj‖).

Baxter [9, 10] discusses the use of a preconditioned conjugate gradient method for
solving the interpolation problem in the case when Gaussians or multiquadrics are used
on a regular grid. The resulting matrices are Toeplitz matrices, and a large body of
literature exists for dealing with this special case (see, e.g., [30]).

8.3.2 Preconditioned GMRES via Approximate Cardinal Functions

More recently, Beatson, Cherrie and Mouat [11] have proposed a preconditioner for
the iterative solution of radial basis function interpolation systems using the GMRES
method of Saad and Schultz [165]. The GMRES method is a general purpose iterative
solver that can be applied to nonsymmetric (nondefinite) systems. For fast convergence
the matrix should be preconditioned such that its eigenvalues are clustered around 1
and away from the origin. Obviously, if the basis functions for the radial basis function
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space were cardinal functions, then the matrix would be the identity matrix with all
its eigenvalues equal to 1. Therefore, the GMRES method would converge in a single
iteration. Consequently, the preconditioning strategy for the GMRES method is to
obtain a preconditioning matrix B that is close to the inverse of A.

Since it is too expensive to find the true cardinal basis (this would involve at least
as much work as solving the interpolation problem), the idea pursued in [11] (and
suggested earlier in [12, 14]) is to find approximate cardinal functions similar to the
functions ψj in the previous subsection. Now, however, there is also an emphasis on
efficiency, i.e., we are interested in local approximate cardinal functions, if possible.
Several different strategies were suggested in [11]. We will now explain the basic idea.

Given the centers x1, . . . ,xN , the j-th approximate cardinal function is given as a
linear combination of the basis functions ϕi = ϕ(‖ · −xi‖), where i runs over (some
subset of) {1, . . . , N}, i.e.,

ψj =
N
∑

i=1

bjiϕ(‖ · −xi‖) + pj , (50)

where (for the conditionally positive definite case) pj is a polynomial in Πs
m−1 and the

coefficients bji satisfy the usual conditions

N
∑

i=1

bjipj(xi) = 0 for all pj ∈ Πs
m−1. (51)

The key feature in designing the approximate cardinal functions is to have only a few
n � N coefficients in (50) to be nonzero. In that case the functions ψj are found
by solving small n × n linear systems, which is much more efficient than dealing with
the original N ×N system. For example, in [11] the authors use n ≈ 50 for problems
involving up to 10,000 centers. The resulting preconditioned system is of the same
form as the earlier preconditioner (48), i.e., we now have to solve the preconditioned
problem

(BA)c = By,

where the entries of the matrix BA are just ψj(xk), j, k = 1, . . . , N .
The simplest strategy for determining the coefficients bji is to select the n nearest

neighbors of xj , and to find bji by solving the (local) cardinal interpolation problem

ψj(xi) = δij , i = 1, . . . , n,

subject to the moment constraint (51) listed above. Here δij is the Kronecker-delta,
and the points xi are the nearest neighbors selected above.

This basic strategy is improved by adding so-called special points that are dis-
tributed (very sparsely) throughout the domain.

A few numerical results for thin plate spline and multiquadric interpolation in IR2

from [11] are listed in Table 6. The condition numbers are `2-condition numbers, and
the points were randomly distributed in the unit square. The “local precond.” column
uses the n = 50 nearest neighbors to determine the approximate cardinal functions,
whereas the right-most column uses the 41 nearest neighbors plus 9 special points placed
uniformly in the unit square. The effect of the preconditiong on the performance of
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ϕ N unprecond. local precond. local precond. w/special

TPS 289 4.005e06 1.464e03 5.721e00
1089 2.753e08 6.359e05 1.818e02
4225 2.605e09 2.381e06 1.040e06

MQ 289 1.506e08 3.185e03 2.639e02
1089 2.154e09 8.125e05 5.234e04
4225 3.734e10 1.390e07 4.071e04

Table 6: Condition numbers without and with preconditioning.

the GMRES algorithm was, e.g., a reduction from 103 to 8 iterations for the 289 point
data set for thin plate splines, or from 145 to 11 for multiquadrics.

Remark: An extension of the ideas of Beatson, Cherrie and Mouat [11] to linear
systems arising in the collocation solution of partial differential equations (see Section 9)
was explored in Mouat’s Ph.D. thesis [143] and also in the recent paper by Ling and
Kansa [119].

8.4 Change of Basis

Another idea that can be used to obtain a “better” basis for conditionally positive
definite radial basis functions is closely connected to finding the reproducing kernel
of the associated native space. Since we did not elaborate on the construction of the
native spaces for conditionally positive definite functions earlier, we will now present
the relevant formulas (without going into the details). In particular, for polyharmonic
splines we will be able to find a basis that is in a certain sense homogeneous, and
therefore the condition number of the related interpolation matrix will depend only on
the number N of data points, but not on their separation distance.

This approach was suggested by Beatson, Light and Billings [13], and has its roots
in work by Sibson and Stone [186].

Let Φ be a strictly conditionally positive definite kernel of order m, and X =
{x1, . . . ,xN} ⊂ Ω ⊂ IRs be an (m− 1)-unisolvent set of centers. Then the reproducing
kernel for the native space NΦ(Ω) is given by

K(x,y) = Φ(x,y)−
M
∑

k=1

pk(x)Φ(xk,y)−
M
∑

`=1

p`(y)Φ(x,x`)

+
M
∑

k=1

M
∑

`=1

pk(x)p`(y)Φ(xk,x`) +
M
∑

`=1

p`(x)p`(y),

where the points x1, . . . ,xM are an (m−1)-unisolvent subset of X and the polynomials
pk, k = 1, . . . ,M , form a cardinal basis for Πs

m−1 whose dimension is M =
(

s+m−1
m−1

)

,
i.e.,

p`(xk) = δk,`, k, ` = 1, . . . ,M.
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An immediate consequence is that we can express the radial basis function interpolant
to values of some function f given on X in the form

Pf(x) =
N
∑

j=1

cjK(x,xj), x ∈ IRs .

The coefficients cj are determined by satisfying the interpolation conditions

Pf(xi) = f(xi), i = 1, . . . , N.

We will see below (in Tables 7 and 8) that this basis already performs “better” than
the standard basis {Φ(·,x1), . . . ,Φ(·,xN )} if we keep the number of centers fixed, and
vary only their separation distance.

To obtain the homogeneous basis referred to above we modify K by subtracting the
tensor product polynomial, i.e.,

κ(x,y) = K(x,y)−
M
∑

`=1

p`(x)p`(y).

Now, if y is one of the points x1, . . . ,xM in the (m−1)-unisolvent subset of X mentioned
above, then

κ(·,y) = Φ(·,y)−
M
∑

k=1

pk(·)Φ(xk,y)−
M
∑

`=1

p`(y)Φ(·,x`) +
M
∑

k=1

M
∑

`=1

pk(·)p`(y)Φ(xk,x`)

= Φ(·,y)−
M
∑

k=1

pk(·)Φ(xk,y)− Φ(·,y) +
M
∑

k=1

pk(·)Φ(xk,y) = 0.

This means that the functions κ(·,xj), j = 1, . . . , N , cannot be used as a basis of
our approximation space. However, it turns out that the matrix C with entries Ci,j =
κ(xi,xj), i, j = M+1, . . . , N , is positive definite, and therefore we obtain the following
basis

{p1, . . . , pM} ∪ {κ(·,xM+1), . . . , κ(·,xN )},
and the interpolant can be represented in the form

Pf(x) =
M
∑

j=1

djpj(x) +
N
∑

k=M+1

ckκ(x,xk), x ∈ IRs .

Since the polynomials pk are cardinal on {x1, . . . ,xM} the coefficients are determined
by solving the linear system

[

I 0
P T C

] [

d

c

]

= y, (52)

with I an M × M identity matrix, C as above, Pij = pj(xi), j = 1, . . . ,M , i =
M + 1, . . . , N , c = [cM+1, . . . , cN ]T , d = [d1, . . . , dM ]T , and the right-hand side y =
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Spacing h Standard matrix Reproducing kernel Homogeneous matrix

1/8 3.5158e03 1.8930e04 7.5838e03
1/16 3.8938e04 2.6514e05 1.1086e05
1/32 5.1363e05 4.0007e06 1.6864e06
1/64 7.6183e06 6.2029e07 2.6264e07

Table 7: Condition numbers for different thin plate spline bases on [0, 1]2 with increasing
number of points and varying separation distance.

[f(x1), . . . , f(xM ), f(xM+1), . . . , f(xN )]T . The identity block (cardinality of the poly-
nomial basis functions) implies that the coefficient vector d is given by

dj = f(xj), j = 1, . . . ,M,

and therefore the system (52) can be solved as

Cc = ỹ − P T d,

where ỹ = [f(xM+1), . . . , f(xN )]T and the matrix C is symmetric and positive definite.
Finally, for polyharmonic splines, the `2-condition number of the matrix C is invariant
under a uniform scaling of the centers, i.e., if Ch = (κ(hxi, hxj)), then cond(Ch) =
cond(C). This is proved to varying degrees in the paper [13] by Beatson, Light and
Billings, the thesis [205] by Wendland, and the paper [97] by Iske.

We close with some numerical experiments from [13]. They use thin plate splines
in IR2. In the first experiment (illustrated in Table 7) the problem is formulated on the
unit square [0, 1]2. Here both the number of points and the separation distance vary
from one row in the table to the next. The three different columns list the `2-condition
numbers of the interpolation matrix for the three different approaches mentioned above,
i.e., using the standard basis consisting of functions Φ(·,xj) and monomials, using the
reproducing kernels K(·,xj), and using the matrix C. The three polynomial cardinal
functions are based on the three corners (0, 0), (0, 1), and (1, 0). With this setup all
three methods perform comparably.

In the second experiment (shown in Table 8) the number of points is kept fixed at
5×5 equally spaced points. However, the domain is scaled to the square [0, a]2 with scale
parameter a, so that only the separation distance qX changes from one row to the next.
Now, clearly the two new methods show less dependence on the separation distance,
with the homogeneous matrix C being completely insensitive as claimed earlier.

Remark: Iske takes advantage of the scale invariance of polyharmonic splines (and
thin plate splines in particular) in the construction of a numerical multiscale solver for
transport problems (see, e.g., [15]).

8.5 Special Numerical Algorithms

Since the use of radial basis functions for interpolation of scattered data leads to (large)
linear systems that are frequently ill-conditioned it is important to devise algorithms
that can
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Scale parameter Standard matrix Reproducing kernel Homogeneous matrix

0.001 2.4349e08 8.4635e08 5.4938e02
0.01 2.4364e06 8.4640e06 5.4938e02
0.1 2.5179e04 8.5134e04 5.4938e02
1.0 3.6458e02 1.3660e03 5.4938e02
10 1.8742e06 1.2609e03 5.4938e02
100 1.1520e11 1.1396e05 5.4938e02
1000 3.4590e15 1.1386e07 5.4938e02

Table 8: Condition numbers for different thin plate spline bases on [0, a]2 with fixed
number of points and varying separation distance.

1. efficiently solve the interpolation system (preferably in O(N) operations), and

2. efficiently evaluate a radial basis function expansion once its coefficients have
been determined (preferably in a constant number of operations – independent
of N).

The second goal is also important for approximation via the moving least squares
method or by quasi-interpolation.

All of the work described below is very recent, and it is quite likely that much more
insight can be gained, and many improvements are still possible.

Various iterative algorithms for the (approximate) evaluation of the scattered data
interpolant have recently been suggested by Schaback and Wendland (see, e.g., [178,
179, 205]) as well as by Faul and Powell (see, e.g., [66, 67]). Both groups of authors
base their algorithms on an iteration on residuals. We will not discuss the details of
these algorithms here.

For most algorithms one needs to make sure that the residuals are evaluated effi-
ciently. Common approaches are fast multipole expansions, fast tree codes, fast Fourier
transforms, or compactly supported functions.

Since fast multipole expansions and tree codes are a standard tool in molecular
dynamics simulations (and most likely discussed at other places in this handbook)
we concentrate on some recent work by Kunis, Nieslony, Potts and Steidl on the fast
Fourier transform at nonuniformly spaced points. In the recent papers [105, 152, 154]
the authors suggest the use of the fast Fourier transform at nonuniformly spaced points
as an efficient way to solve and evaluate radial basis function problems. The software
package NFFT by the authors is available for free download [104]. A discussion of the
actual NFFT software would go beyond the scope of this survey. Instead, we briefly
describe how to use NFFTs and FFTs to evaluate expansions of the form

Pf(yj) =

N
∑

k=1

f(xk)Φ(yj − xk) (53)

simultaneously at many evaluation points yj , j = 1, . . . ,M . Direct summation requires
O(MN) operations, while it can be shown that use of the NFFT reduces the cost to
O(M + N) operations. Therefore, as is always the case with fast Fourier transforms,
use of the algorithm will pay off for sufficiently many evaluations.
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In their papers Nieslony, Potts and Steidl distinguish between kernels Φ that are
singular and those that are non-singular. Singular kernels are C∞ everywhere except
at the origin and include examples such as

1

r
,

1

r2
, log r, r2 log r,

where r = ‖ · ‖. Non-singular kernels are smooth everywhere such as Gaussians and
(inverse) multiquadrics. We will restrict our discussion to this latter class.

The basic idea for the following algorithm is remarkably simple. It relies on the fact
that the exponential e−α(yj−xk) can be written as e−αyjeαxk . Moreover, the method
applies to arbitrary kernels (which is in strong contrast to the fast multipole type
methods for which one requires different expansions for each different kernel). One
starts out by approximating the (arbitrary, but smooth) kernel using standard Fourier
series, i.e.,

Φ(x) ≈
∑

`∈In

b`e
2πi`x

with index set In =
[

−n
2 ,

n
2

)s
. The coefficients b` are found by the discrete inverse

Fourier transform

b` =
1

ns

∑

k∈In

Φ

(

k

n

)

e−2πik`/n.

Numerically, this task is accomplished with software for the standard (inverse) FFT
(e.g., [75]).

Remark: Note that this definition of the Fourier transform (as well as the one below)
is different from the one used in Section 2. However, in order to stay closer to the
software packages, we adopt the notation used there.

Therefore,

Pf(yj) ≈
N
∑

k=1

f(xk)
∑

`∈In

b`e
2πi`(yj−xk)

=
∑

`∈In

b`

N
∑

k=1

f(xk)e
2πi`(yj−xk)

Now, the exponential is split using the above mentioned property, i.e.,

Pf(yj) ≈
∑

`∈In

b`

N
∑

k=1

f(xk)e
−2πi`xke2πi`yj .

This, however, can be viewed as a fast Fourier transform at non-uniformly spaced
points, i.e.,

Pf(yj) ≈
∑

`∈In

c`e
2πi`yj .

where the coefficients c` = b`a` with

a` =

N
∑

k=1

f(xk)e
−2πi`xk
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which is nothing but an inverse discrete Fourier transform at non-uniformly spaced
points. These latter two transforms are dealt with numerically using the NFFT soft-
ware.

Together, for the case of non-singular kernels Φ we have the following algorithm.

Algorithm (Fast Fourier transform evaluation)

For ` ∈ In
Compute the coefficients

b` =
1

ns

∑

k∈In

Φ

(

k

n

)

e−2πik`/n

by inverse FFT.

Compute the coefficients

a` =
N
∑

k=1

f(xk)e
−2πi`xk

by inverse NFFT.

Compute the coefficients c` = a`b`.

end

For 1 ≤ j ≤M

Compute the values

Pf(yj) ≈
∑

`∈In

d`e
2πi`yj

by NFFT.

end

Remarks:

1. In the papers [105, 152, 154] the authors also suggest a special boundary regu-
larization in case the kernel does not decay fast enough, i.e., the kernel is large
near the boundary of the domain.

2. Of course, this method will only provide an approximation of the expansion (53)
and error estimates are provided in the literature (see, e.g., [152]).

3. While we only illustrated the use of (N)FFTs for the evaluation of radial sums
it should be clear that this method can also be coupled with the algorithms
mentioned earlier (such as preconditioned GMRES, the “greedy” algorithm by
Schaback and Wendland, or the Faul-Powell algorithm) to efficiently solve radial
basis function interpolation systems.
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A few examples of the use of fast Fourier transforms for the evaluation of approxi-
mate moving least squares approximations (quasi-interpolants) are given in Figures 4–6.
The graphs on the left indicate `∞ approximation errors for a Franke-type function.
The graphs on the right show the execution times in seconds for direct summation
(solid lines) and FFT summations (dashed lines). The colors correspond to the three
different types of kernels listed in Table 9 below. The red curves correspond to the
Gaussians (listed in the O(h2) column), green curves to the function in the O(h4) col-
umn (Gaussian multiplied by a linear Laguerre polynomial), and blue curves to those
in the O(h6) column (Gaussian multiplied by a quadratic Laguerre polynomial).
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Figure 4: Convergence and execution times for 1D example.

9 25 81 289 1089 4225 16641 66049 263169  4198401
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

N

er
ro

rs

9 25 81 289 1089 4225 16641 66049 263169  4198401
0

50

100

150

200

250

300

N

tim
es

Figure 5: Convergence and execution times for 2D example.

The evaluation of the results listed in Figures 4–6 occurs at 10,001, 16,641, and
2,146,689 randomly distributed points in the unit square, respectively. The 3D experi-
ments show that there is a cross-over value of about 1,000 evaluations at which the FFT
approach becomes faster than the direct approach. For the one and two-dimensional
experiments this cross-over point occurs much earlier and is not detectable in the fig-
ures.

The polynomial terms in Table 9 are given by generalized Laguerre polynomials

with radial arguments. In general one can show (see, e.g., [127]) that if L
s/2
d is used

to denote the generalized Laguerre polynomial of degree d, then the smooth function
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Figure 6: Convergence and execution times for 3D example.

f in IRs can be approximated with approximate approximation order O(h2d+2) by an
expansion of the form

Pf(x) =
1

(πD)s/2

N
∑

k=1

f(xk)L
s/2
d

(‖x− xk‖2
Dh2

)

exp

(

−‖x− xk‖2
Dh2

)

.

Here D is a parameter that controls a so-called saturation error, i.e., the predicted ap-
proximation order is achieved only up to some user-controllable threshold (and there-
fore referred to as approximate approximation). This threshold is clearly visible in the
convergence graphs.

s O(h2) O(h4) O(h6)

1 e−|x|2
(

3

2
− |x|2

)

e−|x|2
(

15

8
− 5

2
|x|2 +

1

2
|x|4
)

e−|x|2

2 e−‖x‖2 (

2− ‖x‖2
)

e−‖x‖2

(

3− 3‖x‖2 +
1

2
‖x‖4

)

e−‖x‖2

3 e−‖x‖2

(

5

2
− ‖x‖2

)

e−‖x‖2

(

35

8
− 7

2
‖x‖2 +

1

2
‖x‖4

)

e−‖x‖2

Table 9: Generating functions for approximate MLS approximation in IRs.

8.6 Domain Decomposition

Finally, another method commonly used to deal with large computational problems is
the domain decomposition method. The domain decomposition method is frequently
implemented on parallel computers in order to speed up the computation even more.
A standard reference (based mostly on finite difference and finite element methods) is
the book by Smith, Bjørstad and Gropp [188]. For radial basis functions there is a
recent paper by Beatson, Light and Billings [13].

The main aim of the paper [13] is to solve the radial basis function interpolation
problem discussed multiple times in previous sections. In particular, a so-called multi-
plicative Schwarz algorithm (which is analogous to Gauss-Seidel iteration) is presented,
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and linear convergence of the algorithm is proved. A section with numerical experi-
ments reports results for an additive Schwarz method (which is analogous to Jacobi
iteration).

In particular, the authors implemented polyharmonic radial basis functions, and
used the scale invariant basis discussed in Section 8.4.

The classical additive Schwarz algorithm is usually discussed in the context of par-
tial differential equations, and it is known that one should add a coarse level correction
in order to ensure convergence and to filter out some of the low-frequency oscillations
(see, e.g., [188]).

In [13] a two-level additive algorithm for interpolation problems was presented.
One begins by subdividing the set on interpolation point X into M smaller sets Xi,
i = 1, . . . ,M , whose pairwise intersection is non-empty. The points that belong to one
set Xi only are called inner points of Xi. Those points in the intersection of more than
one set need to be assigned in some way as inner points to only one of the subsets Xi

so that the collection of all inner points yields the entire set X . This corresponds to
the concept of overlapping domains. One also needs to choose a coarse grid Y that
contains points from all of the inner point sets.

In the setup phase of the algorithm the radial basis function interpolation matrices
for the smaller problems on each of the subsets Xi, i = 1, . . . ,M , are computed and
factored. At this point one can use the homogeneous basis of Section 8.4 to ensure
numerical stability. Now the algorithm proceeds as follows:

Algorithm:

Input: Data f , point sets Xi and factored interpolation matrices Ai, i = 1, . . . ,M ,
tolerance ε

Initialize r = f , s = 0

While ‖r‖ > ε do

For i = 1 to m (i.e., for each subset Xi) do

Determine the coefficients ci of the interpolant to the residual r|Xi
on

Xi.

end

Make c orthogonal to Πs
m−1.

Assemble an intermediate approximation s1 =
N
∑

j=1

cjΦ(·,xj).

Compute the residual on the coarse grid, i.e.,

r1 = r − s1|Y .

Interpolate to r1 on the coarse grid Y using a radial basis function expansion
s2.

Update s = s+ s1 + s2.

Reevaluate the global residual r = f − s on the whole set X
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end

Remarks:

1. In [13] it is proved that a multiplicative version of this algorithm converges at
least linearly. However, the additive version can be more easily implemented on
a parallel computer.

2. If strictly positive definite kernels such as Gaussians are used, then it is not
necessary to make the coefficients c orthogonal to polynomials.

3. As in many algorithms before, the evaluation of the residuals needs to be made
“fast” using either a fast multipole method or a version of the fast Fourier trans-
form.

4. In the case of very large data sets it may be necessary to use more than two levels
so that one ends up with a multigrid algorithm.

5. The authors of [13] report having solved interpolation problems with several mil-
lions of points using the domain decomposition algorithm above.

6. A number of other papers discussing domain decomposition methods for radial
basis functions have recently appeared in the literature (see, e.g., [43, 90, 94, 114,
120, 209]). However, most of these papers contain little theory, focussing mostly
on numerical experiments.

9 Applications

In the first two subsections we will focus on the solution of partial differential equations
using radial basis functions in either a strong form (collocation) approach or a weak
form (Galerkin) approach. A paper that surveys some of these methods and also
discusses the concept of multilevel algorithms combined with smoothing techniques
which improve the convergence of the multilevel algorithms is [58]. In the recent paper
[177] Schaback presents a unified framework for the radial basis function solution of
problems both in the strong and weak form. At the end of the section we will briefly
mention some of the other meshfree methods available for the solution of differential
equations, and then conclude by describing work on meshfree methods by two groups
of researchers that is most relevant to the area of computational nanotechnology.

9.1 Solving Partial Differential Equations via Collocation

In the first part of this section we discuss the numerical solution of elliptic partial
differential equations using a collocation approach based on radial basis functions. To
make the discussion transparent we will focus on the case of a time independent linear
elliptic partial differential equation in IR2.
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9.1.1 Kansa’s Approach

In [100] Kansa suggested a now very popular non-symmetric method for the solution
of elliptic PDEs with radial basis functions. In order to be able to clearly point out
the differences between Kansa’s method and a symmetric approach proposed in [56] we
recall some of the basics of scattered data interpolation with radial basis functions in
IRs discussed in the first few sections of this review.

In this context we are given data {xi, fi}, i = 1, . . . , N , xi ∈ IRs, where we can
think of the values fi being sampled from a function f : IRs → IR. The goal is to find
an interpolant of the form

Pf(x) =

N
∑

j=1

cjϕ(‖x− xj‖), x ∈ IRs, (54)

such that
Pf(xi) = fi, i = 1, . . . , N.

The solution of this problem leads to a linear system Ac = f with the entries of A
given by

Aij = ϕ(‖xi − xj‖), i, j = 1, . . . , N. (55)

As discussed earlier, the matrix A is non-singular for a large class of radial functions
including (inverse) multiquadrics, Gaussians, and the strictly positive definite com-
pactly supported functions of Wendland, Wu, or Buhmann. In the case of strictly
conditionally positive definite functions such as thin plate splines the problem needs to
be augmented by polynomials.

We now switch to the collocation solution of partial differential equations. Assume
we are given a domain Ω ⊂ IRs, and a linear elliptic partial differential equation of the
form

L[u](x) = f(x), x in Ω, (56)

with (for simplicity of description) Dirichlet boundary conditions

u(x) = g(x), x on ∂Ω. (57)

For Kansa’s collocation method we then choose to represent u by a radial basis function
expansion analogous to that used for scattered data interpolation, i.e.,

u(x) =
N
∑

j=1

cjϕ(‖x− ξj‖), (58)

where we now introduce the points ξ1, . . . , ξN as centers for the radial basis func-
tions. They will usually be selected to coincide with the collocation points X =
{x1, . . . ,xN} ⊂ Ω. However, the discussion below is clearer if we formally distinguish
between centers ξj and collocation points xi. We assume the simplest possible setting
here, i.e., no polynomial terms are added to the expansion (58). The collocation matrix
which arises when matching the differential equation (56) and the boundary conditions
(57) at the collocation points X will be of the form

A =

[

Φ
L[Φ]

]

, (59)
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where the two blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi ∈ B, ξj ∈ X ,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ X .

Here we have identified (as we will do throughout this section) the set of centers with
the set of collocation points. The set X is split into a set I of interior points, and B
of boundary points. The problem is well-posed if the linear system Ac = y, with y

a vector consisting of entries g(xi), xi ∈ B, followed by f(xi), xi ∈ I, has a unique
solution.

We note that a change in the boundary conditions (57) is as simple as changing a
few rows in the matrix A in (59) as well as on the right-hand side y. We also point out
that Kansa only proposed to use multiquadrics in (58), and for that method suggested
the use of varying parameters αj , j = 1, . . . , N , which improves the accuracy of the
method when compared to using only one constant value of α (see [100]).

A problem with Kansa’s method is that – for a constant multiquadric shape pa-
rameter α – the matrix A may for certain configurations of the centers ξj be singular.
Originally, Kansa assumed that the non-singularity results for interpolation matrices
would carry over to the PDE case. However, as the numerical experiments of Hon
and Schaback [88] show, this is not so. This is to be expected since the matrix for the
collocation problem is composed of rows which are built from different functions (which
– depending on the differential operator L – might not even be radial). The results for
the non-singularity of interpolation matrices, however, are based on the fact that A is
generated by a single function ϕ.

An indication of the success of Kansa’s method (which has not yet been shown to
be well-posed) are the early papers [42, 43, 77, 101, 142] and many more since. In his
paper [100] Kansa describes three sets of experiments using his method and comments
on the superior performance of multiquadrics in terms of computational complexity
and accuracy when compared to finite difference methods. Therefore, it remains an
interesting open question whether the well-posedness of Kansa’s method can be estab-
lished at least for certain configurations of centers. Moreover, Kansa’s suggestion to use
variable shape parameters αj in order to improve accuracy and stability of the problem
has very little theoretical support. Except for one paper by Bozzini, Lenarduzzi and
Schaback [22] (which addresses only the interpolation setting) this problem has not
been addressed in the literature.

Before we describe an alternate approach which does ensure well-posedness of the
resulting collocation matrix and which is based on basis functions suitable for scattered
Hermite interpolation we would like to point out that in [142] the authors suggest how
Kansa’s method can be applied to other types of partial differential equation prob-
lems such as non-linear elliptic PDEs, systems of elliptic PDEs, and time-dependent
parabolic or hyperbolic PDEs.

9.1.2 An Hermite-based Approach

The following symmetric approach is based on scattered Hermite interpolation (see,
e.g., [95, 151, 192, 211]), which we now also quickly review. In this context we are
given data {xi, Lif}, i = 1, . . . , N , xi ∈ IRs where L = {L1, . . . , LN} is a linearly
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independent set of continuous linear functionals. We try to find an interpolant of the
form

Pf(x) =
N
∑

j=1

cjL
ξ
jϕ(‖x− ξ‖), x ∈ IRs, (60)

satisfying
LiPf = Lif, i = 1, . . . , N.

We have used Lξ to indicate that the functional L acts on ϕ viewed as a function of the
second argument ξ. The linear system Ac = Lf which arises in this case has matrix
entries

Aij = LiL
ξ
jϕ, i, j = 1, . . . , N. (61)

In the references mentioned at the beginning of this subsection it is shown that A is
non-singular for the same classes of ϕ as given for scattered data interpolation in our
earlier sections.

Remark: It should be pointed out that this formulation of Hermite interpolation is
very general and goes considerably beyond the standard notion of Hermite interpolation
(which usually refers to interpolation of successive derivative values). Here any kind of
linear functional are allowed as long as the set L is linearly independent.

We illustrate this approach with a simple example using derivative functionals.

Example: Let data {xi, f(xi)}ni=1 and {xi,
∂f
∂x (xi)}Ni=n+1 with x = (x, y) ∈ IR2 be

given. Then

Pf(x) =
n
∑

j=1

cjϕ(‖x− xj‖)−
N
∑

j=n+1

cj
∂ϕ

∂x
(‖x− xj‖),

and

A =

[

Φ −Φx

Φx −Φxx

]

,

with

Φij = ϕ(‖xi − xj‖), i, j = 1, . . . , n,

−Φx,ij = −∂ϕ
∂x

(‖xi − xj‖), i = 1, . . . , n, j = n+ 1, . . . , N,

Φx,ij =
∂ϕ

∂x
(‖xi − xj‖), i = n+ 1, . . . , N, j = 1, . . . , n,

Φxx,ij =
∂2ϕ

∂x2
(‖xi − xj‖), i, j = n+ 1, . . . , N.

Now we describe an alternative collocation method based on the generalized inter-
polation theory just reviewed. Assume we are given the same PDE (56) with boundary
conditions (57) as in the section on Kansa’s method. In order to be able to apply
the results from scattered Hermite interpolation to ensure the non-singularity of the
collocation matrix we propose the following expansion for the unknown function u:

u(x) =

#B
∑

j=1

cjϕ(‖x− ξj‖) +
N
∑

j=#B+1

cjL
ξ[ϕ](‖x− ξj‖), (62)
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where #B denotes the number of nodes on the boundary of Ω, and Lξ is the differential
operator used in (56), but acting on ϕ viewed as a function of the second argument,
i.e., L[ϕ] is equal to Lξ[ϕ] up to a possible difference in sign. Note the difference in
notation. In (60) L is a linear functional, and in (62) a differential operator.

This expansion for u leads to a collocation matrix A which is of the form

A =

[

Φ Lξ[Φ]
L[Φ] L[Lξ[Φ]]

]

, (63)

where the four blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi, ξj ∈ B,
Lξ[Φ]ij = Lξ[ϕ](‖xi − ξj‖), xi,∈ B, ξj ∈ I,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ B,

L[Lξ[Φ]]ij = L[Lξ[ϕ]](‖xi − ξj‖), xi, ξj ∈ I.

The matrix (63) is of the same type as the scattered Hermite interpolation matrices
(61), and therefore non-singular as long as ϕ is chosen appropriately. Thus, viewed
using the new expansion (62) for u, the collocation approach is certainly well-posed.
Also, note that although A consists of four blocks now, it still is of the same size,
namely N ×N , as the collocation matrix (59) obtained for Kansa’s approach.

Both of the methods described in this section have been implemented for many dif-
ferent applications. A thorough comparison of the two methods was reported in [156].
All in all the Hermite method seems to perform slightly better than Kansa’s method.
Especially for the cases in which relatively many interior points are used (which is where
the methods differ). Also, the matrices for the Hermite method generally have smaller
condition numbers. An advantage of the Hermite approach over Kansa’s method is that
for many differential operators L the collocation matrices resulting from the Hermite
approach are symmetric. Therefore the amount of computation can be reduced consid-
erably, which is important for larger problems. Kansa’s method has the advantage of
being simpler to implement (since less derivatives of the basis functions are required).
Another advantage of Kansa’s method is that is can be easily adapted for nonlinear
elliptic PDEs (see, e.g., [59, 142]).

Since the methods described above were both originally used with globally sup-
ported basis functions, the same concerns as for interpolation problems about stability
and numerical efficiency apply. Two recent papers by Ling and Kansa [119, 120] ad-
dress these issues. In particular, they develop a preconditioner in the spirit of the one
described in Section 8.3.2, and describe their experience with a domain decomposition
algorithm. An attempt to obtain an efficient implementation of the Hermite based
collocation method is a version of the greedy algorithm mentioned in Section 8.5 by
Hon, Schaback and Zhou [89].

A convergence analysis for the symmetric method was formulated by Franke and
Schaback [72, 73]. The error estimates established in [72, 73] require the solution
of the PDE to be very smooth. Therefore, meshfree radial basis function collocation
techniques are especially well suited for (high-dimensional) PDE problems with smooth
solutions on possibly irregular domains. Some numerical evidence for convergence rates
of the symmetric collocation method is given in the papers [56, 98, 156]. Due to the
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known counterexamples [88] for the non-symmetric method, a convergence analysis is
still lacking for that method.

Recently, Miranda [140] has shown that Kansa’s method will be well-posed if it
is combined with so-called R-functions. This idea was also used by Höllig and his
co-workers in their development of WEB-splines (see, e.g., [87]).

Other recent papers investigating various aspects of radial basis function collocation
are, e.g., [34] by Cheng, Golberg, Kansa and Zammito, [68] by Fedoseyev, Friedman
and Kansa, [102] by Kansa and Hon, [110] by Larsson and Fornberg, [112] by Leitão,
and [124] by Mai-Duy and Tran-Cong.

For example, in the paper [68] it is suggested that the collocation points on the
boundary are also used to satisfy the PDE. However, this adds a set of extra equations
to the problem, and therefore one should also use some additional basis functions in the
expansion (58). It is suggested in [68] that these centers lie outside the domain Ω. The
motivation for this modification is the well-known fact that both for interpolation and
collocation with radial basis functions the error is largest near the boundary. In various
numerical experiments this strategy is shown to improve the accuracy of Kansa’s basic
non-symmetric method. It should be noted that there is once more no theoretical
foundation for this method.

Larsson and Fornberg [110] compare Kansa’s basic collocation method, the modi-
fication just described, and the Hermite-based symmetric approach mentioned earlier.
Using multiquadric basis functions in a standard implementation they conclude that
the symmetric method is the most accurate, followed by the non-symmetric method
with boundary collocation. The reason for this is the better conditioning of the system
for the symmetric method. Larsson and Fornberg also discuss an implementation of
the three methods using the complex Contour-Padé integration method mentioned in
Section 8.1. With this technique stability problems are overcome, and it turns out that
both the symmetric and the non-symmetric method perform with comparable accu-
racy. Boundary collocation of the PDE yields an improvement only if these conditions
are used as additional equations, i.e., by increasing the problem size. It should also
be noted that often the most accurate results were achieved with values of the multi-
quadric shape parameter α which would lead to severe ill-conditioning using a standard
implementation, and therefore these results could be achieved only using the complex
integration method. Moreover, in [110] radial basis function collocation is deemed to
be far superior in accuracy than standard second-order finite differences or a standard
Fourier-Chebyshev pseudospectral method.

Leitão [112] applies the symmetric collocation method to a fourth-order Kirchhoff
plate bending problem, and emphasizes the simplicity of the implementation of the ra-
dial basis function collocation method. And, finally, Mai-Duy and Tran-Cong [124] sug-
gest a collocation method for which the basis functions are taken to be anti-derivatives
of the usual radial basis functions.

9.2 Galerkin Methods

A variational approach to the solution of PDEs with RBFs has so far only been consid-
ered by Wendland [202, 203]. In [203] he studies the Helmholtz equation with natural
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boundary conditions, i.e.,

−∆u+ u = f in Ω,
∂

∂ν
u = 0 on ∂Ω,

where ν denotes the outer unit normal vector. The classical Galerkin formulation then
leads to the problem of finding a function u ∈ H1(Ω) such that

a(u, v) = (f, v)L2(Ω) for all v ∈ H1(Ω),

where (f, v)L2(Ω) is the usual L2 inner product, and for the Helmholtz equation the
bilinear form a is given by

a(u, v) =

∫

Ω
(∇u · ∇v + uv)dx.

In order to obtain a numerical scheme the infinite-dimensional space H1(Ω) is replaced
by some finite-dimensional subspace SX ⊆ H1(Ω), where X is some computational grid
to be used for the solution. In the context of RBFs SX is taken as

SX = span{φ(‖ · −xj‖2), xj ∈ X}.

This results in a square system of linear equations for the coefficients of uX ∈ SX
determined by

a(uX , v) = (f, v)L2(Ω) for all v ∈ SX .
For more on the Galerkin method (in the context of finite elements) see, e.g., [23, 24].
It was shown in [202] that for those RBFs (globally as well as locally supported) whose
Fourier transform decays like (1 + ‖ · ‖2)−2β the following convergence estimate holds:

‖u− uX ‖H1(Ω) ≤ Chσ−1‖u‖Hσ(Ω), (64)

where h is the meshsize of X , the solution satisfies the regularity requirements u ∈
Hσ(Ω), and where the convergence rate is determined by β ≥ σ > s/2 + 1. For
Wendland’s compactly supported RBFs this implies that functions which are in C2κ

and strictly positive definite on IRs satisfying κ ≥ σ − s+1
2 will have O(hκ+(s−1)/2)

convergence order, i.e., the C0 function ϕ3,0 = (1−r)2+ yields O(h) and the C2 function
ϕ3,1 = (1 − r)4+(4r + 1) delivers O(h2) convergence in IR3. As with the convergence
estimate for symmetric collocation there is a link between the regularity requirements
on the solution and the space dimension s. Also, so far, the theory is only established
for PDEs with natural boundary conditions.

The convergence estimate (64) holds for the non-stationary setting, i.e., if we are
using compactly supported basis functions, for fixed support radii. By the same argu-
mentation as earlier, one will want to switch to the stationary setting and employ a
multilevel algorithm in which the solution at each step is updated by a fit to the most
recent residual.

The convergence estimate (64) holds for the non-stationary setting, i.e., if we are
using compactly supported basis functions, for fixed support radii. By the same ar-
gumentation as used in Section 8, one will want to switch to the stationary setting
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and employ a multilevel algorithm in which the solution at each step is updated by
a fit to the most recent residual. This should ensure both convergence and numerical
efficiency.

Here is the variant of the stationary multilevel interpolation algorithm listed above
for the weak form solution of PDEs (see [203]):

Algorithm (Multilevel Galerkin)

u0 = 0.

For k from 1 to K do

Find uk ∈ SXk
such that a(uk, v) = (f, v)− a(uk−1, v) for all v ∈ SXk

.

Update uk ← uk−1 + uk.

end

It may come as a little bit of a surprise that this algorithm does not converge in
general (see Tab. 1 in [203]).

Since the weak formulation can be interpreted as a Hilbert space projection method,
Wendland was able to show that a modified version of the multilevel Galerkin algorithm,
namely

Algorithm (Nested Multilevel Galerkin)

Fix K and M ∈ IN, and set v0 = 0.

For j from 0 while resiudal > tolerance to M do

Set u0 = vj .

Apply the k-loop of the previous algorithm and denote the result with û(vj).

Set vj+1 = û(vj).

end

does converge. In fact, using this algorithm Wendland proves, and also observes
numerically, convergence which is at least linear (see Theorem 3 and Tab. 2 in [203]).
The important difference between the two multilevel Galerkin algorithms is the added
outer iteration in the nested version which is a well-known idea from linear algebra
introduced in 1937 by Kaczmarz [99]. A proof of the linear convergence for general
Hilbert space projection methods coupled with Kaczmarz iteration can be found in
[189]. This alternate projection idea is also the fundamental ingredient in the conver-
gence proof of the domain decomposition method of Beatson, Light and Billings [13]
described in the previous section. We mention here that in the multigrid literature
Kaczmarz’ method is frequently used as a smoother (see e.g. [128]).

Remark: Aside from difficulties with Dirichlet (or sometimes called essential) bound-
ary conditions, Wendland reports that the numerical evaluation of the weak-form inte-
grals presents a major problem for the radial basis function Galerkin approach. Both
of these difficulties are also well-known in many other flavors of meshfree weak-form
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methods. An especially promising solution to the issue of Dirichlet boundary condi-
tions seems to be the use of R-functions as proposed by Höllig and Reif in the context
of WEB-splines (see, e.g., [87] or our earlier discussion in the context of collocation
methods).

Many other meshfree methods for the solution of partial differential equations in the
weak form appear in the (mostly engineering) literature. These methods come under
such names as smoothed particle hydrodynamics (SPH) (e.g., [141]), reproducing kernel
particle method (RKPM) (see, e.g., [115, 122]), point interpolation method (PIM) (see,
[121]), element free Galerkin method (EFG) (see, e.g., [17]), meshless local Petrov-
Galerkin method (MLPG) [3], h-p-cloud method [41], partition of unity finite element
method (PUFEM) [5, 134], or generalized finite element method (GFEM) [4]. Most of
these methods are based on the moving least squares approximation method discussed
in section 7.

There are two recent books by Atluri [2] and Liu [121] summarizing many of these
methods. However, these books focus mostly on a survey of the various methods and
related computational and implementation issues with little emphasis on the mathe-
matical foundation of the methods. The recent survey paper [4] by Babuška, Banerjee
and Osborn, fills a large part of this void.

9.3 Applications in Computational Nanotechnology and Quantum
Chemistry

Applications of meshfree methods to problems at the nanoscale are still at their initial
stages. So far, not much has been published on the subject.

The group at Northwestern University around Wing Kam Liu (see, e.g., [157, 158,
164, 215]) has mostly been modelling problems in nanomechanics exploring such prop-
erties as Young’s modulus, bending stiffness, buckling criteria, and tensile and com-
pressive strenghts. The advantage of the use of meshfree approximation methods is
the ability to describe both multi-scale and multi-physics problems. For example, in
[158] and [215] the mechanics of carbon nanotubes are studied. In particular the au-
thors study how the mechanical properties of nanotubes are affected if they are filled
with fullerenes. This is a phenomenon that has been observed in experiments, but for
which no computer model had existed previously. The study is performed by coupling a
molecular dynamics model (for the C60 fullerenes) to a meshfree continuum model (for
the nanotubes). This approach bridges the bonding potential with the continuum prop-
erty of the material, and additionally serves as a useful tool for evaluating the bonding
potentials. The meshfree method used for these simulations is the reproducing ker-
nel particle method (RKPM) which is closely related to the multilevel approximate
moving least squares approximation method described in Section 7. Other examples
studied in [158] include nanoropes, nanoelectromechanical systems, nanosensors, and
nanotube-reinforced polymers.

The Princeton group with Herschel Rabitz [91, 92, 93] uses radial basis functions
and reproducing kernel interpolation to solve the Schrödinger equation in quantum fluid
dynamics. The authors conclude that for 2D-computations the RBF-based method is
comparable to standard split-operator or Chebyshev expansion methods, while for 3D-
computations it is superior due to its low storage requirements and uniform accuracy.
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Moreover, by constructing the reproducing kernel associated with the differential op-
erator for the Schrödinger equation one obtains an optimal interpolation method (as
explained in Section 5) that can be used on arbitrary sets of grid points in arbitrary
dimensions. This is seen by the authors as a significant advantage over other meth-
ods such as discrete variable representations (DVRs), Fourier spectral methods, the
distributed Gaussian basis method (DGB), or distributed approximating functionals
(DAFs).

Finally, the group around Michael Griebel at the University of Bonn also are in-
terested in both meshfree approximation methods and applications in nanotechnology
(see the contribution of M. Griebel in this handbook).
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