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Abstract

Moving least squares (MLS) and radial basis function (RBF) methods play a
central role in multivariate approximation theory. In this paper we provide a unified
framework for both RBF and MLS approximation. This framework turns out to
be a linearly constrained quadratic minimization problem. We show that RBF
approximation can be considered as a special case of MLS approximation. This
sheds new light on both MLS and RBF approximation. Among the new insights are
dual bases for the approximation spaces and certain discrete reproducing kernels.

1 Introduction

In the literature on multivariate approximation methods (see, e.g., the recent books
[1, 5, 6, 17] or the references therein) both the moving least squares (MLS) method and
radial basis functions (RBFs) are prominently featured. It seems that authors from the
engineering community prefer methods for the solution of partial differential equations
that are based on the moving least squares approach (such as EFG, hp-clouds, MLPG,
PUFEM, RKPM, SPH or others), whereas the mathematics community has focussed
mostly on radial basis functions. In this paper we will consider the approximation (or
interpolation) of scattered multivariate data of the form (xi, fi), i = 1, . . . , N , where the
data sites xi are arbitrarily distributed in Rs and the associated values fi = f(xi) ∈ R
are assumed to be generated by some (unknown) function f . In particular, we will
discuss the use of both RBFs and MLS approximation to accomplish this task. It is
our goal to show that, taking an appropriate point of view (namely that of a linearly
constrained quadratic optimization problem), the discussion of the two approaches can
be unified.

The connection between radial basis function interpolation and optimal recovery
has been known for some time (see, e.g., [19] or the recent paper [22]). It is known that
every strictly positive definite (and with some extra effort also conditionally positive
definite) kernel Φ(·, ·) can be associated with a natural Hilbert function space – its
native space NΦ. In the case of strictly positive definite kernels, this native space is a
reproducing kernel Hilbert space with Φ as its reproducing kernel. The most important
consequence of this is the connection to optimal recovery, i.e., the fact that the solution
of the scattered data interpolation problem to data generated by some function f from
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the native space NΦ using linear combinations of the basis functions Φi = Φ(·,xi)
yields not only an interpolant for the data, but an optimal one. In fact, we can state
this optimality in (at least) three different ways (see, e.g., [20, 21] or [30]):

1. The interpolant has minimal native space norm.

2. The interpolant is the (native space) best approximation to the data.

3. If the interpolant is written in cardinal form, then it has the smallest pointwise
error among all possible quasi-interpolants.

In particular, the first of these statements implies that the RBF interpolant is in fact
the (automatic) solution to a constrained quadratic optimization problem. We will now
elaborate on this point of view. However, we are interested in the more general setting
where we still sample the function f on the set X = {x1, . . . ,xN}, but now introduce
a second set Ξ = {ξ1, . . . , ξM} at which we center the basis functions. Usually we will
have M ≤ N , and we will see below that the case M = N with Ξ = X recovers the
traditional interpolation setting.

Let us assume we want to use a function Pf (RBF expansion) of the form

Pf(x) =
M∑

j=1

cjΦ(x, ξj), x ∈ Rs, (1)

where (for the sake of simplicity) Φ is assumed to be a strictly positive definite kernel
such as a Gaussian Φ(x, ξj) = e−α‖x−ξj‖2 , α > 0, an inverse multiquadric Φ(x, ξj) =
(‖x− ξj‖2 +α2)−1/2, or one of the compactly supported functions suggested by Wend-
land, e.g., Φ(x, ξj) = (1 + ‖x− ξj‖)4+(4‖x− ξj‖+ 1).

We now choose the coefficients cj in (1) such that the quadratic form

1
2
cT Qc (2)

with c = [c1, . . . , cM ]T and some symmetric positive definite matrix Q is minimized
subject to the N linear constraints

Ac = f , (3)

where A is an N × M matrix assumed to have full rank, and the right-hand side
f = [f1, . . . , fN ]T is given. We will specify possible connections between the kernel Φ
and the matrices Q and A shortly.

Such a constrained quadratic minimization problem can be converted to a system
of linear equations by introducing Lagrange multipliers λ = [λ1, . . . , λN ]T , i.e., we
consider finding the minimum of

1
2
cT Qc− λT [Ac− f ] (4)

with respect to c and λ. Since Q is a positive definite matrix, it is well known that the
functional to be minimized is convex, and thus has a unique minimum. Therefore, the
standard necessary condition for such a minimum (which is obtained by differentiating
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with respect to c and λ and finding the zeros of those derivatives) is also sufficient.
This leads to the linear system[

Q −AT

A 0

] [
c
λ

]
=

[
0
f

]
.

By applying Gaussian elimination to this block matrix (Q is invertible since it is as-
sumed to be positive definite and A is assumed to have full rank) we get

λ =
(
AQ−1AT

)−1
f (5)

c = Q−1AT
(
AQ−1AT

)−1
f . (6)

The connection to our introductory comments regarding RBF interpolation is as
follows. We assume that the centers are chosen at the data locations, i.e., M = N and
Ξ = X . Next, we let the quadratic form represent the native space norm (see, e.g.,
[20]) of the interpolant Pf =

∑N
j=1 cjΦ(·,xj), i.e.,

‖Pf‖2
NΦ

=
N∑

i=1

N∑
j=1

cicjΦ(xi,xj) = cT Qc (7)

with Qij = Φ(xi,xj) and c = [c1, . . . , cN ]T , and take as the linear side conditions the
interpolation conditions

Ac = f ⇐⇒ Pf(xi) = fi, i = 1, . . . , N,

with the interpolation matrix A having the same entries as the (symmetric) matrix Q,
the same coefficient vector c as in (7) and data vector f = [f1, . . . , fN ]T . Then we see
from the general solution (5) and (6) that the Lagrange multipliers become

λ = A−T f = A−1f

and the coefficients are given by
c = λ.

Therefore, as stated earlier, the minimum norm interpolant is obtained by solving the
interpolation equations alone, i.e., the norm minimization comes for free.

Since we started out with the more general point of view that Pf is generated by
M basis functions, and N linear constraints are specified, our formulation also covers
both over- and under-determined least squares fitting where the quadratic form cT Qc
represents an added smoothing (or regularization) term.

This term is not required to obtain a unique solution of the system Ac = f in
the over-determined case (M ≤ N) which corresponds to the standard least squares
approximation by an RBF expansion of the form (1). The coefficients cj are then either
determined directly by an SVD or QR solution of the linear system, or by minimizing
‖Pf − f‖2

2, where the `2-norm

‖f‖2
2 =

N∑
i=1

[f(xi)]
2
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is induced by the discrete inner product

〈f, g〉 =
N∑

i=1

f(xi)g(xi). (8)

It is well known that this approximation problem has a unique solution if the (rectan-
gular) matrix A with entries

Ajk = Φ(xj , ξk), j = 1, . . . , N, k = 1, . . . ,M,

has full rank. If the centers in Ξ are chosen to form a subset of the data locations X
then A does indeed have full rank since A has an M ×M square submatrix which is
non-singular (by virtue of being an interpolation matrix and since the kernel is assumed
to be strictly positive definite). Once again, by solving Ac = f (or finding the least
squares RBF approximation) we are also ensured to have a minimum (native space)
norm solution. More theoretical work addressing least squares radial basis function
approximation was reported in [5] and [25].

In the under-determined case, however, a regularization term is needed to guarantee
a unique solution (cf. the solution of under-determined linear systems in the numerical
linear algebra literature, e.g., [26]). Usually the regularized least squares approximation
problem is formulated as minimization of

1
2
cT Qc + ω

N∑
j=1

(Pf(xj)− fj)
2 , (9)

where the regularization parameter ω balances the tradeoff between the quadratic form
which controls the smoothness of the fitting function and the least squares term which
measures the closeness to the data. The formulation (9) is used in regularization theory
(see, e.g., [7, 12]). The same formulation is also used in penalized least squares fitting
(see, e.g., [13]), the literature on smoothing splines [18, 23], and in papers by Wahba
on thin plate splines (e.g., [28, 29]). In fact, the idea of smoothing a data fitting
process by this kind of formulation seems to go back to at least Whittaker [31] in
1923. In practice a penalized least squares formulation is especially useful if the data
fi cannot be completely trusted, i.e., they are contaminated by noise. In this case, a
(penalized) least squares fit is advisable. The problem of minimizing (9) is also known
as ridge regression in the statistics literature, and there are many techniques (such as
generalized cross-validation) for choosing a good regularization parameter ω.

The equivalence of (9) with our earlier formulation (4) follows from

1
2
cT Qc + ω

N∑
j=1

(Pf(xj)− fj)
2 =

1
2
cT Qc + ω[Ac− f ]T [Ac− f ]

=
1
2
cT Qc− λT [Ac− f ],

where
λ = −ω[Ac− f ],

and the regularization parameter is determined automatically by the native space norm
minimization. This is analogous to the solution of an under-determined linear system
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using the singular value decomposition, in which case one automatically obtains the
minimum norm solution.

2 Moving Least Squares Approximation

An alternative to radial basis function interpolation and approximation is the so-called
moving least squares method. As we will see below, in this method the approximation
Pf to f is obtained by solving many (small) linear systems, instead of via solution of
a single – but large – linear system as is customary for RBF approximation.

To make a direct connection with the constrained optimization formulation of the
introduction we start with the Backus-Gilbert formulation of the moving least squares
method.

2.1 The Backus-Gilbert Approach for MLS Approximation

In the Backus-Gilbert approach one considers a quasi-interpolant of the form

Pf(x) =
N∑

i=1

f(xi)Ψi(x), (10)

where f = [f(x1), . . . , f(xN )]T represents the given data. In the introduction we
pointed out that the quasi-interpolant that minimizes the point-wise error is given if
the generating functions Ψi are cardinal functions, i.e., Ψi(xj) = δij , i, j = 1, . . . , N .

In the moving least squares method one does not attempt to minimize the pointwise
error, but instead seeks to find the values of the generating functions Ψi(x) = Ψ(x,xi)
by minimizing

1
2

N∑
i=1

Ψ2
i (x)

1
W (x,xi)

(11)

subject to the polynomial reproduction constraints

N∑
i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d, (12)

where Πs
d is the space of s-variate polynomials of total degree at most d which has

dimension m =
(
s+d
d

)
and the W (·,xi) are positive weight functions.

In the above formulation there is no explicit emphasis on nearness of fit as this is
implicitly obtained by the quasi-interpolation “ansatz” and the closeness of the generat-
ing functions to the pointwise optimal delta functions. This closeness is achieved if the
weight functions decrease with distance from the origin. Many standard (strictly posi-
tive definite) radial functions are candidates for these weight functions. However, strict
positive definiteness is not required, so that, e.g., (radial or tensor product) B-splines
can also be used. The polynomial reproduction constraint is a standard requirement
for quasi-interpolants used to achieve a desired approximation order.
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If we think of x as a fixed (evaluation) point, then we have another constrained
quadratic minimization problem of the form discussed in the introduction. The un-
knowns are collected in the “coefficient vector” Ψ(x) = [Ψ(x,x1), . . . ,Ψ(x,xN )]T . The
smoothness functional (11)

1
2
Ψ(x)T Q(x)Ψ(x)

is given via the diagonal matrix

Q(x) = diag
(

1
W (x,x1)

, . . . ,
1

W (x,xN )

)
, (13)

with positive weight functions W (·,xi) (and thus for any x the matrix Q(x) is positive
definite).

The linear polynomial reproduction constraint (12) can be written in matrix form
as

AΨ(x) = p(x),

where A is the m × N matrix with entries Aji = pj(xi), i = 1, . . . , N , j = 1, . . . ,m,
and p = [p1, . . . , pm]T is a vector that contains a basis for the space Πs

d of polynomials
of degree d.

According to our earlier work we use Lagrange multipliers and then know that (cf.
(5) and (6))

λ(x) =
(
AQ−1(x)AT

)−1
p(x) (14)

Ψ(x) = Q−1(x)AT λ(x). (15)

Equation (14) implies that the Lagrange multipliers are obtained as the solution of a
Gram system

G(x)λ(x) = p(x), (16)

where the entries of G are the weighted `2-inner products

Gjk(x) = 〈pj , pk〉W (x) =
N∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m. (17)

The special feature here is that the weight varies with the evaluation point x. The
Gram matrix is symmetric and positive definite since the polynomial basis is linearly
independent and the weights are positive.

Equation (15) can be written componentwise, i.e., the generating functions in (10)
are given by

Ψi(x) = W (x,xi)
m∑

j=1

λj(x)pj(xi), i = 1, . . . , N. (18)

Therefore, once the values of the Lagrange multipliers λj(x), j = 1, . . . , N , have been
determined we have explicit formulas for the values of the generating functions. In
general, however, finding the Lagrange multipliers involves solving a (small) linear
system (the Gram system) that changes as soon as x changes.
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2.2 Standard Interpretation of MLS Approximation

In the standard approach to moving least squares approximation (see [16]) we consider
the following approximation problem. Assume we are given data values f(xi), i =
1, . . . , N , on some set X = {x1, . . . ,xN} ⊂ Rs of distinct data sites, where f is some
(smooth) function, as well as an approximation space U = span{u1, . . . , um} (with
m < N), along with the same weighted `2-inner product

〈f, g〉W (x) =
N∑

i=1

f(xi)g(xi)W (x,xi), x ∈ Rs fixed, (19)

as introduced above in (17). Again, the positive weights Wi = W (·,xi), i = 1, . . . , N ,
depend on the evaluation point x.

We now wish to find the best approximation from U to f at the point x with respect
to the norm induced by (19). In the statistics literature this process is known as local
regression (see, e.g., the book [8]). Following the usual least squares approach, this
means we will obtain the approximation (at the point x) as

Pf(x) =
m∑

j=1

cj(x)uj(x), (20)

where the coefficients cj(x) are such that

N∑
i=1

[Pf(xi)− f(xi)]
2 Wi(x) (21)

is minimized. Due to the definition of the inner product (19) whose weight function
“moves” with the evaluation point x, the coefficients cj in (20) depend also on x. As
a consequence one has to solve the normal equations

m∑
j=1

cj(x)〈uj , uk〉W (x) = 〈f, uk〉W (x), k = 1, . . . ,m, (22)

anew each time the evaluation point x is changed. In matrix notation (22) becomes

G(x)c(x) = fu(x), (23)

with the positive definite Gram matrix G(x) =
(
〈uj , uk〉W (x)

)m

j,k=1
, coefficient vector

c(x) and right-hand side vector fu(x) as in (22) all depending on x.
Usually one takes U to be a space of (multivariate) polynomials, i.e.,

Pf(x) =
m∑

j=1

cj(x)pj(x), x ∈ Rs, (24)

where {p1, . . . , pm} is a basis for the space Πs
d of s-variate polynomials of degree d.

This restriction is necessary to show equivalence with the Backus-Gilbert approach in
the next subsection. However, we will make use of a different space U when pointing
out the connection to RBF approximation later on.
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The Gram system (23) now becomes

G(x)c(x) = fp(x), (25)

where the matrix G(x) has entries

Gjk(x) = 〈pj , pk〉W (x) =
N∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m, (26)

as in (17), and the right-hand side vector consists of the projections of the data f onto
the basis functions, i.e.,

fp(x) =
[
〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
.

The connection to the constrained quadratic minimization problems discussed ear-
lier can be seen as follows. We are now minimizing (for fixed x)

1
2
cT (x)G(x)c(x)− µT (x)

[
G(x)c(x)−AQ−1(x)f

]
, (27)

where G(x) is the Gram matrix (17), Q(x) the diagonal matrix of weight functions
(13) and A the matrix of polynomials used earlier. The term AQ−1(x)f corresponds
to the right-hand side vector fp(x) of (25), i.e.,

AQ−1(x)f =
[
〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T = fp(x).

The solution of the linear system resulting from the minimization problem (27) gives
us (cf. (5) and (6))

µ(x) =
(
G(x)G−1(x)GT (x)

)−1
AQ−1(x)f = G−T (x)AQ−1(x)f

c(x) = G−1(x)GT (x)µ(x) = µ(x)

so that – analogous to the case of radial basis function interpolation – by solving only
the Gram system G(x)c(x) = fp(x) we automatically minimize the quadratic form

cT (x)G(x)c(x) =
m∑

j=1

m∑
k=1

cj(x)ck(x)Gjk(x)

=
m∑

j=1

m∑
k=1

cj(x)ck(x)〈pj , pk〉W (x).

This quadratic form should be interpreted as an analogue to the native space norm of

the approximant Pf(x) =
m∑

j=1

cj(x)pj(x).
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2.3 Equivalence of the Two Approaches to Moving Least Squares Ap-
proximation

We now show that the two approaches to the moving least squares method just de-
scribed are equivalent, i.e., we show that Pf(x) computed via (10) and (24) are the
same. On the one hand the standard moving least squares formulation (24) establishes
Pf(x) in the form

Pf(x) =
m∑

j=1

cj(x)pj(x) = pT (x)c(x),

where p(x) = [p1(x), . . . , pm(x)]T and c(x) = [c1(x), . . . , cm(x)]T .
In (27) we represented the normal equations for the standard approach as

G(x)c(x) = AQ−1(x)f

which implies
c(x) = G−1(x)AQ−1(x)f .

Thus, using the standard approach, we get

Pf(x) = pT (x)c(x) = pT (x)G−1(x)AQ−1(x)f . (28)

The approximant (10) in the Backus-Gilbert “ansatz”, on the other hand, is of the
form

Pf(x) =
N∑

i=1

f(xi)Ψi(x) = ΨT (x)f ,

where as before Ψ(x) = [Ψ(x,x1), . . . ,Ψ(x,xN )]T and f = [f(x1), . . . , f(xN )]T . For
the Backus-Gilbert approach we derived (see (14) and (15))

λ(x) = G−1(x)p(x)
Ψ(x) = Q−1(x)AT λ(x),

where G(x) = AQ−1(x)AT (see (17) or (26)). Therefore, we now obtain

Pf(x) = ΨT (x)f =
[
Q−1(x)AT G−1(x)p(x)

]T
f

which, by the symmetry of Q(x) and G(x), is the same as (28).

2.4 A Dual Representation for the Standard Approach

We just derived that on the one hand (from the Backus-Gilbert formulation)

G(x)λ(x) = p(x) ⇐⇒ λ(x) = G−1(x)p(x). (29)

By taking multiple right-hand sides p(x) with x ∈ X we get

Λ = G−1(x)A, (30)

where the m × N matrices Λ and A have entries Λji = λj(xi) and Aji = pj(xi),
i = 1, . . . , N , j = 1, . . . ,m.
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The standard formulation, on the other hand, gives us

G(x)c(x) = fp(x) ⇐⇒ c(x) = G−1(x)fp(x) = G−1(x)AQ−1(x)f (31)

where
fp(x) =

[
〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T = AQ−1(x)f

as above. By combining (30) with (31) we get

c(x) = G−1(x)AQ−1(x)f = ΛQ−1(x)f = fλ(x),

where fλ(x) is defined analogously to fp(x). Componentwise this gives us

cj(x) = 〈f, λj〉W (x), j = 1, . . . ,m,

and therefore,

Pf(x) =
m∑

j=1

〈f, λj〉W (x)pj(x). (32)

It is also possible to formulate the moving least squares method by using the La-
grange multipliers of the Backus-Gilbert approach as basis functions for the approxi-
mation space U . Then, using the same argumentation as above, we end up with

Pf(x) =
m∑

j=1

dj(x)λj(x) (33)

with
dj(x) = 〈f, pj〉W (x), j = 1, . . . ,m.

Moreover, from the linear constraints in the Backus-Gilbert approach (12) we know
that the polynomials are reproduced by our projection operator P, i.e.,

Pp(x) = p(x), for all p ∈ Πs
d.

In the dual approach the Backus-Gilbert minimization requires reproduction of the
Lagrange multiplier basis of U , i.e.,

Pλj(x) = λj(x), j = 1, . . . ,m.

Now we can show that the polynomials pj and Lagrange multipliers λj , j = 1, . . . ,m,
are bi-orthonormal, i.e.,

〈λk, pj〉W (x) = δjk, j, k = 1 . . . , m. (34)

Indeed, if we use λk in place of f in the dual expansion (33), then

Pλk(x) =
m∑

j=1

〈λk, pj〉W (x)λj(x)

which implies the bi-orthogonality relationship (34) by virtue of the fact that Pλk(x) =
λk(x) established above.

Therefore, the Lagrange multipliers form a basis that is dual to the polynomials.
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2.5 Summary of MLS Approximation

The equivalence of the Backus-Gilbert approach and the standard approach shows us
that the moving least squares approximant has all of the following properties:

• It reproduces any polynomial of degree at most d in s variables exactly (even
though this is not explicitly enforced by the solution of the normal equations in
the standard approach).

• It produces the best locally weighted least squares fit.

• Viewed as a quasi-interpolant, the generating functions Ψi are as close as possible
to the optimal cardinal basis functions in the sense that (11) is minimized.

• Since polynomials are infinitely smooth, either of the representations of Pf shows
that its smoothness is determined by the smoothness of the weight function(s)
Wi = W (·,xi).

It is well known that (as a consequence of the Mairhuber-Curtis Theorem) any basis
for a nontrivial multivariate Haar space needs to be data dependent. Both the dual
Lagrange multiplier basis λ1, . . . , λm and the generating functions Ψ1, . . . ,ΨN depend
on the data locations xi ∈ X (see also the plots in Section 5).

By also considering the dual expansion (33) we have three alternative representa-
tions for the moving least squares quasi-interpolant. This is summarized in the following
theorem.

Theorem 2.1 Let f : Ω → R be some function whose values on the set of points
X = {xi}N

i=1 ⊂ Rs are given as data. Let p1, . . . , pm be a basis for Πs
d, let {W (·,xi)}N

i=1

be a set of positive weight functions centered at the points of X , and let λj, j = 1, . . . ,m,
be the Lagrange multipliers defined by (14). Furthermore, consider the generating func-
tions

Ψi(x) = W (x,xi)
m∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

The best local least squares approximation to f on X in the sense of (21) is given by

Pf(x) =
m∑

j=1

〈f, λj〉W (x)pj(x)

=
m∑

j=1

〈f, pj〉W (x)λj(x)

=
N∑

i=1

f(xi)Ψi(x).

The argumentation used above for polynomials can be generalized for the more
general “ansatz” with approximation space U . This allows us to build moving least
squares approximations that also reproduce any other function that is included in U .
This can be very beneficial for the solution of partial differential equations with known
singularities (see, e.g., [2] or [3]). We will make use of this more general approximation
space U to establish a connection between RBF and MLS approximation in the next
section.
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3 Alternative Interpretations of Radial Basis Function
Approximation

We now return to radial basis functions and show how RBF approximation can be
interpreted as a special case of moving least squares approximation. Consequently we
will arrive at three alternative formulations for the RBF approximant.

In fact, with the notation introduced thus far this connection is not difficult to
see. All we need to do is assume that the approximation space U in the standard
moving least squares approach is given as U = span{Φ(·, ξ), ξ ∈ Ξ}, and the weights
are identically equal to the constant 1. For simplicity we will restrict our discussion
to the case where Ξ is a subset of X . Then the standard MLS formulation with
U specified as above corresponds exactly to the least squares formulation of radial
basis function approximation given in the beginning (with the additional identification
m = M). However, the dual formulation and the Backus-Gilbert approach now provide
two additional interpretations of RBF approximation.

3.1 The Backus-Gilbert Approach for RBF Approximation

In the RBF context the Backus-Gilbert approach corresponds to a quasi-interpolant of
the form

Pf(x) =
N∑

i=1

f(xi)K(x,xi), (35)

where as before f = [f(x1), . . . , f(xN )]T represents the given data.
Now the values of the generating functions K(·,xi) are found by minimizing

1
2

N∑
i=1

K2(x,xi) (36)

subject to the linear constraints

N∑
i=1

Φ(xi, ξj)K(x,xi) = Φ(x, ξj), j = 1, . . . ,M. (37)

These constraints imply that we obtain generating functions for the quasi-interpolant
(35) that lie in the same space U that is generated by the usual radial basis functions,
i.e., U = span{Φ(·, ξ1), . . . ,Φ(·, ξM )}. In fact, any function u ∈ U will be reproduced
by the projection P, i.e.,

Pu(x) = u(x), for all u ∈ U . (38)

Moreover, the kernel has the additional optimality property that its `2-norm is mini-
mized. In particular, for the interpolation problem this implies that the cardinal radial
basis functions (see below) have the smallest possible `2-norm.

The Backus-Gilbert approach also implies that the kernel K is given by

K(x,y) =
M∑

j=1

λj(x)Φ(x,y), (39)
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where the Lagrange multipliers λj , j = 1, . . . ,M , form a dual basis for U . As before,
the dual basis is found by solving the Gram system

Gλ = Φ, (40)

where G has entries

Gjk =
N∑

i=1

Φ(xi, ξj)Φ(xi, ξk), j, k = 1, . . . ,M,

and the vectors λ and Φ collect the dual basis functions and basis functions, respec-
tively.

Note that the dual basis allows us to see the coefficients cj of the standard RBF
approximation

Pf(x) =
M∑

j=1

cjΦ(x, ξj)

(cf. (1)) in a new light. As for the MLS approach we have

cj = 〈f, λj〉, j = 1, . . . ,m.

This shows us that the coefficients in the expansion (1) with basis functions Φ(·, ξj)
are obtained by projecting the data onto the dual basis. Of course, due to the norm
used in the optimization criterion (39) all inner products are now standard `2-inner
products.

The kernel K is symmetric and positive definite. This can easiest be seen by
interpreting K as λTΦ. Then, using the definition (40) of the dual basis we have

K(x,y) = λT (x)Φ(y) = λT (x)Gλ(y),

and the symmetry of K follows from the symmetry and positive definiteness of G. Note
that we also have the dual interpretation

K(x,y) = ΦT (x)G−1Φ(y).

From the Backus-Gilbert approach we know that the radial basis functions are
reproduced (see (38)) by our projection operator P, i.e.,

PΦ(x, ξj) = Φ(x, ξj), j = 1, . . . ,M.

A Backus-Gilbert minimization can also be formulated for the dual basis. This implies
the reproduction

Pλj(x) = λj(x), j = 1, . . . ,M,

and, as before, we have bi-orthonormality of the basis functions Φj = Φ(·, ξj) and dual
basis functions λj , j = 1, . . . ,M , i.e.,

〈λk,Φj〉 = δjk, j, k = 1 . . . , M. (41)

We claimed above that in the special case M = N with Ξ = X the quasi-interpolant
becomes an interpolant, i.e., the functions K(·,xi) form a cardinal basis for U . This
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claim is equivalent to showing that for M = N we have K(xi,x`) = δi`. To see this, we
first note that the radial basis functions are symmetric, i.e., Φ(x, ξj) = Φ(ξj ,x). Since
the dual basis functions are obtained as linear combinations of the basis functions they
are also symmetric. Therefore,

K(xi,x`) =
n∑

j=1

λj(xi)Φj(x`)

=
n∑

j=1

λi(ξj)Φ`(ξj)

= 〈λi,Φ`〉 = δi`

where the last step requires equality of Ξ with X and the bi-orthogonality relation (41).
Moreover,

Pf(x) =
N∑

i=1

f(xi)K(x,xi)

=
N∑

i=1

f(xi)
M∑

j=1

λj(x)Φ(xi, ξj)

=
M∑

j=1

[
N∑

i=1

f(xi)Φ(xi, ξj)

]
︸ ︷︷ ︸

=〈f,Φj〉=dj

λj(x).

Thus, we have the dual expansion

Pf(x) =
M∑

j=1

djλj(x),

where the coefficients dj are given as projections of the data onto the original basis
functions Φj = Φ(·, ξj).

The following theorem summarizes our different RBF representations.

Theorem 3.1 Let f : Ω → R be some function whose values on the set of points
X = {xi}N

i=1 ⊂ Rs are given as data. Let Ξ = {ξj}M
j=1 ⊂ Rs be another set of points

that generates the approximation space U = span{Φ(·, ξj), ξj ∈ Ξ}. Furthermore, let
λj, j = 1, . . . ,M , be the dual basis functions defined by (40) and K the kernel given
by (39). The best least squares approximation to f on X from U with respect to the
standard `2-inner product is given by

Pf(x) =
M∑

j=1

〈f, λj〉Φj(x) (42)

=
M∑

j=1

〈f,Φj〉λj(x) (43)

=
N∑

i=1

f(xi)K(x,xi). (44)
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Since the space U is only M -dimensional, Theorem 3.1 implies that, for M < N ,
the set {K(·,xi)}N

i=1 is linearly dependent on Ξ. In other words, the sets {Φj}M
j=1 and

{λj}N
j=1 are bases for U , whereas {K(·,xi)}N

i=1 is only a frame, i.e., contains redundan-
cies.

4 Reproducing Kernels

In the introduction we mentioned the reproducing kernel Hilbert space (native space)
associated with the strictly positive definite kernel Φ. We now want to study the
reproducing properties of the kernels K and Ψ introduced above. We start with the
precise definition of a reproducing kernel (see, e.g., [6] or [30]).

Definition 4.1 Let Ω be a (rather arbitrary) domain, and H be a real Hilbert space of
functions f : Ω → R. A function K : Ω× Ω → R is called reproducing kernel for H if

1. K(·,x) ∈ H for all x ∈ Ω,

2. f(x) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ Ω.

It is also known that the reproducing kernel K is strictly positive definite and
unique.

4.1 Discrete RBF Reproducing Kernels

In the RBF setting we consider Ω = X and the space U = span{Φ(·, ξ1), . . . ,Φ(·, ξM )}.
The Backus-Gilbert formulation ensures that the projection P reproduces every func-
tion u ∈ U (see (38)). Moreover, since K(·,x) ∈ U for any x ∈ X (by virtue of (39))
and

〈u, K(·,x)〉 =
N∑

i=1

u(xi)K(xi,x) = Pu(x) = u(x)

for all u ∈ U we see that K is the reproducing kernel of U with respect to the discrete
`2-norm. Therefore, we refer to K as a discrete reproducing kernel. It should be pointed
out that the space U is a space that is much different from the native space NΦ of Φ.
It is defined on a discrete domain, and with respect to a discrete inner product.

We can also consider an equivalent inner product for functions in U . To this end,
we express the first function as f =

∑M
j=1 cjΦj , and the second function in the dual

representation g =
∑M

j=1 djλj . Then we define the inner product

〈f, g〉U =
M∑

j=1

cjdj . (45)

In the special case of interpolation (i.e., M = N with Ξ = X ) this inner product is
equivalent to the discrete `2-inner product, i.e.,

〈f, g〉U = 〈f, g〉.
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Since any function in U is reproduced by P we know that cj = 〈f, λj〉 and dj = 〈g,Φj〉.
Thus, using the definition of the `2-inner product and (39) we have

M∑
j=1

cjdj =
M∑

j=1

〈f, λj〉〈g,Φj〉,

=
M∑

j=1

N∑
i=1

f(xi)λj(xi)
N∑

`=1

g(x`)Φj(x`)

=
N∑

i=1

N∑
`=1

f(xi)g(x`)
M∑

j=1

λj(xi)Φj(x`)

=
N∑

i=1

N∑
`=1

f(xi)g(x`)K(xi,x`).

Now, making use of the cardinality property K(xi,x`) = δi` for the interpolation case,
we obtain

N∑
i=1

N∑
`=1

f(xi)g(x`)K(xi,x`) =
N∑

i=1

N∑
`=1

f(xi)g(x`)δi`

=
N∑

i=1

f(xi)g(xi)

= 〈f, g〉.

4.2 Discrete MLS Reproducing Kernels

In the MLS setting the kernel Ψ was given by (see (18))

Ψ(x,y) = W (x,y)
m∑

j=1

λj(x)pj(y), y ∈ X .

Due to the presence of the weight function the definition of an inner product and
verification of reproduction properties is complicated. We again present two different
approaches. First, we directly consider functions in the space spanned by Ψ on X . Our
second approach is to decouple the weight function using Fourier series. This leads to
a discrete framework that is infinite-dimensional.

For functions of the form

f(x) =
N∑

i=1

αiΨ(x,xi), g(x) =
N∑

`=1

β`Ψ(x,x`),

with xi ∈ X and arbitrary (real) coefficients αi and β` we can define the inner product

〈f, g〉H =
N∑

i=1

N∑
`=1

αiβ`Ψ(xi,x`). (46)

This definition implies

〈Ψ(x, ·),Ψ(·,y)〉H = Ψ(x,y), x,y ∈ X .
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The norm in H is then given by

‖f‖2
H = 〈f, f〉H =

N∑
i=1

N∑
`=1

αiα`Ψ(xi,x`).

It is clear that this quantity is positive (for nonzero f) since Ψ is symmetric and positive
definite.

The reproducing property of Ψ(·,x) for functions in H follows from

〈f,Ψ(·,x)〉H = 〈
N∑

i=1

αiΨ(xi, ·),Ψ(·,x)〉H

=
N∑

i=1

αiΨ(xi,x)

= f(x).

Also, clearly, the function Ψ(·,x) is an element of H whenever x ∈ X .
For our second interpretation we now assume that the weight function is not just

positive, but positive definite and translation invariant so that we can apply Bochner’s
Theorem. First we represent the weight function by its (multivariate) Fourier series,
i.e.,

W (x,y) = w(x− y) =
∑
k∈Zs

µke2πik(x−y)

=
∑
k∈Zs

µke2πikxe−2πiky

=
∑
k∈Zs

µkϕk(x)ϕk(y)

with
µk = ŵ(k) =

∫
Rs

w(x)e−2πikxdx.

Note that Bochner’s Theorem ensures the nonnegativity of the coefficients µk, and
therefore absolute convergence of the Fourier series. Moreover, the difference between
various weight functions is given only by these coefficients. The Fourier terms are the
same for all weight functions.

Now we can use this (absolutely convergent) Fourier series in the representation of
the reproducing kernel. This gives us

Ψ(x,y) = W (x,y)
m∑

j=1

λj(x)pj(y)

=
∑
k∈Zs

µkϕk(x)ϕk(y)
m∑

j=1

λj(x)pj(y)

=
∞∑

k=1

νkρk(x)σk(y).
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After this re-arrangement (and change from counting on the infinite lattice to indexing
over positive integers), m different coefficients νk are equal to one µk, and the functions
ρk are products of ϕk and λj , whereas σk is built from ϕk and pj .

We can now observe that for any f ∈ H (the same H as in our first approach)

f(x) =
N∑

i=1

αiΨ(x,xi)

=
N∑

i=1

αiΨ(xi,x)

=
N∑

i=1

αi

∞∑
k=1

νkρk(xi)σk(x)

=
∞∑

k=1

νk

[
N∑

i=1

αiρk(xi)

]
σk(x)

=
∞∑

k=1

νk〈α, ρk〉σk(x) =
∞∑

k=1

γkσk(x).

Here, α represents the function whose values on the set X correspond to the coefficients
αi, i = 1, . . . , N . Moreover, we have introduced the abbreviation

γk = νk〈α, ρk〉, k = 1, 2, . . . ,

where

〈f, g〉 =
N∑

i=1

f(xi)g(xi)

is the (uniformly weighted) discrete `2-inner product on X as used in the RBF section.
We also have a dual interpretation (expressed in terms of a function g instead of f)

g(x) =
N∑

`=1

β`Ψ(x,x`)

=
N∑

`=1

β`

∞∑
k=1

νkρk(x)σk(x`)

=
∞∑

k=1

νk

[
N∑

`=1

β`σk(x`)

]
ρk(x)

=
∞∑

k=1

νk〈β, σk〉ρk(x) =
∞∑

k=1

δkρk(x).

Here
δk = νk〈β, σk〉, k = 1, 2, . . . ,

and β plays the same role as α above.
Note that now we have a finite series representation for functions in H (with basis

Ψ(·,xi), i = 1, . . . , N) and two infinite series representations (with frame ρk, or dual
frame σk, k = 1, 2, . . .).

Again, there are three equivalent representations of the least squares approximation.
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Theorem 4.2 Let f : Ω → R be some function whose values on the set of points
X = {xi}N

i=1 ⊂ Rs are given as data. Let the approximation space be generated by
the same set, i.e., H = span{Ψ(·,xi), xi ∈ X}, where Ψ is the kernel given by (18).
Furthermore, let ρk and σk, k = 1, 2, . . ., be the frame and dual frame defined above.
The best least squares approximation to f on X from H with respect to the inner product
(19) is given by

Pf(x) =
N∑

i=1

f(xi)Ψ(x,xi) (47)

=
∞∑

k=1

νk〈f, σk〉ρk(x) (48)

=
∞∑

k=1

νk〈f, ρk〉σk(x). (49)

The Fourier series representation also provides us with an equivalent formulation
for the Hilbert space inner product (46) defined above, i.e.,

〈f, g〉H =
∞∑

k=1

γkδk

νk
. (50)

To see this we begin with the expression given on the right-hand side of the formula
and derive (46):

∞∑
k=1

γkδk

νk
=

∞∑
k=1

νk〈α, ρk〉νk〈β, σk〉
νk

=
∞∑

k=1

νk〈α, ρk〉〈β, σk〉

=
∞∑

k=1

νk

N∑
i=1

αiρk(xi)
N∑

`=1

β`σk(x`)

=
N∑

i=1

N∑
`=1

αiβ`

∞∑
k=1

νkρk(xi)σk(x`)

=
N∑

i=1

N∑
`=1

αiβ`Ψ(xi,x`)

= 〈f, g〉H.

Note that the formula given in (50) is the analogue of the finite formula (45) we
had in the RBF setting.

5 Examples

5.1 Shepard’s Method

The moving least squares method in the case m = 1 with p1(x) ≡ 1 is known to yield
Shepard’s method [24]. Using our notation we have

Pf(x) = c1(x).
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The Gram ”matrix” consists of only one element

G(x) = 〈p1, p1〉W (x) =
N∑

i=1

W (x,xi)

so that (cf. (26))
G(x)c(x) = fp(x)

implies

c1(x) =

N∑
i=1

f(xi)W (x,xi)

N∑
i=1

W (x,xi)

.

The dual basis is given by (see (16))

G(x)λ(x) = p(x)

so that
λ1(x) =

1
N∑

i=1

W (x,xi)

,

and
Pf(x) = d1(x)λ1(x) (51)

with

d1(x) = 〈f, p1〉W (x) =
N∑

i=1

f(xi)W (x,xi).

The reproducing kernel is defined as (see (18))

Ψ(x,y) = W (x,y)λ1(x)p1(y) =
W (x,y)

N∑
i=1

W (x,xi)

.

This gives rise to the well-known quasi-interpolation formula for Shepard’s method

Pf(x) =
N∑

i=1

f(xi)Ψ(x,xi)

=
N∑

i=1

f(xi)
W (x,xi)

N∑
k=1

W (x,xk)

.

Of course this is the same as the basis expansion c1(x) and the dual expansion (51).
We should now have bi-orthonormality on X , i.e.,

〈λ1, p1〉W (x) = 1.
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Indeed,

〈λ1, p1〉W (x) =
m∑

i=1

λ1(xi)W (x,xi)

=
N∑

i=1

W (x,xi)
N∑

k=1

W (xi,xk)

,

which equals 1 if we restrict x to be an element of the set X .

5.2 Plots of Basis-Dual Basis Pairs

To obtain plots of a typical Gaussian basis function and dual basis function for the
RBF framework we let Ξ = X be the set of 13 equally spaced points in [−5, 5].
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Figure 1: Plot of Gaussian basis function (left), dual basis (center), and reproducing
kernel (right) centered at ξ7 = 0.

Figure 1 shows these functions along with a corresponding discrete reproducing
kernel K associated with the center ξ7 = 0 in the middle of the interval, whereas
Figure 2 shows the functions centered at the left endpoint ξ1 = −5.

Notice the scale on the dual basis as well as the fact that the kernel is a cardinal
function, i.e., equal to 1 at ξ7 = 0, and equal to zero at all other ξj . In the case of true
approximation, i.e., when M < N , the plots will look similar. However, the kernel is no
longer a cardinal function – but only an approximate cardinal function (a generating
function for a quasi-interpolant).
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Figure 2: Plot of Gaussian basis function (left), dual basis (center), and reproducing
kernel (right) centered at ξ1 = −5.
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A set of basis, dual basis and reproducing kernel for interpolation at 13 non-
uniformly spaced points in [−5, 5] is shown in Figure 3. The dependence of the dual
basis and reproducing kernel on the data is clearly visible.
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Figure 3: Plot of Gaussian basis function (left), dual basis (center), and reproducing
kernel (right) centered at ξ1 = −5.

For the plots in the moving least squares case we again let X be the set of 13 equally
spaced points in [−5, 5]. However, now m = 2, i.e., we consider the case that ensures
reproduction of quadratic polynomials. The weight function is taken to be the same
Gaussian as above.

The three basis polynomials p1(x) = 1, p2(x) = x, and p3(x) = x2 are shown in
Figure 4, whereas the dual basis functions λ1, λ2, and λ3 are displayed in Figure 5.
The figure shows that, except for the boundary effects caused by the finite interval,
these functions resemble a quadratic, linear and constant polynomial.
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Figure 4: Plot of three polynomial basis functions for MLS approximation.
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Figure 5: Plot of three dual basis functions for MLS approximation.

In Figure 6 we plot one of the reproducing kernels (centered at ξ7 = 0) along with
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an approximate MLS generating function of the form

Ψ(x,y) =
1√
σπ

(
3
2
− ‖x− y‖2

σ

)
e−

‖x−y‖2
σ

with scale parameter σ as derived in [11].

0

0.1

0.2

0.3

0.4

0.5

–4 –2 2 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

–4 –2 2 4

x

Figure 6: Plot of MLS kernel (left) and approximate MLS generating function (right)
centered at x7 = 0.

6 Summary

In this paper we attempted to provide a unified framework for both RBF and MLS
approximation. This framework turned out to be the setting of a linearly constrained
quadratic minimization problem. The two approaches to MLS approximation present
in the literature (Backus-Gilbert optimization, and weighted moving least squares ap-
proximation) were transferred to the setting of RBF approximation. This showed that
RBF approximation can be considered as a special case of MLS approximation (with
global uniform weights), and also resulted in new interpretations of RBF approxima-
tion. Certain discrete reproducing kernel spaces were also discussed.
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