Math 590 – Meshfree Methods

Time and Location: 11:25am–12:40pm MW, Location E1 027 Instructor: Greg Fasshauer Office: 208A E1 Phone: 567-3149 Email: <u>fasshauer@iit.edu</u> WWW: <u>http://math.iit.edu/~fass/</u> Office hours: MW: 2:00pm–3:00pm, also by appointment

Textbook(s): G. Fasshauer, *Meshfree Approximation Methods with MATLAB*, World Scientific, 2007.
H. Wendland, *Scattered Data Approximation*, Cambridge University Press, 2004.

Other required material: MATLAB

Prerequisites: Some exposure to computational mathematics and advanced analysis, consent of the instructor.

Objectives:

- 1. Students will learn the definitions and understand the key concepts of multivariate scattered data approximation with kernel-based methods,
- 2. Students will learn to solve multivariate interpolation and least squares approximation problems,
- 3. Students will learn how to apply these methods to the solution of partial differential equations,
- 4. Students will learn how to implement and use these algorithms in MATLAB,
- 5. Students will improve their problem solving skills in computational mathematics,
- 6. Students will improve their presentation and writing skills.

Course Outline:		
1.	Introduction including a historical perspective	2
2.	Scattered data fitting and the Haar-Mairhuber-Curtis theorem	2
3.	Positive definite kernels and reproducing kernel Hilbert spaces	6
4.	Examples of kernels, including radial, non-radial and anisotropic kernels	2
5.	Connection to kriging	4
6.	Connection to Green's kernels	2
7.	Generalized Sobolev spaces	2
8.	Accuracy and optimality of RKHS methods	2
9.	"Flat" limits	1
10	. The uncertainty principle – an unfortunate misconception	1
11	. Alternate bases (data-dependent: Lagrange, Newton; data-independent:	
	eigenfunctions)	3
12	. Stable computation, Hilbert-Schmidt SVD	4
13	. Parameter optimization, MLE, cross validation	3
14	. Machine learning (RBF networks and SVMs)	2
15	. Hermite interpolation, approximation of derivative data	2
16	. Various methods for PDEs (collocation, MFS, MPS, method of lines)	4

Assessment:	Homework	25%
	Computer Programs	20%
	Test	25%
	Final Exam/Project (Tues., Dec.9, 8am-10am)	30%