
3 Solution of Nonlinear Equations

3.1 Bisection Method

The main idea is to make use of the Intermediate Value Theorem (IVT):

For f ∈ C[a, b] with f(a)f(b) < 0 there exists a number c ∈ (a, b) such that
f(c) = 0.

This leads to a simple Algorithm:

1. Take c =
a + b

2
.

2. If f(a)f(c) < 0 (i.e., root lies in (a, c)), let a = a, b = c.

If f(c)f(b) < 0 (i.e., root lies in (c, b)), let a = c, b = b.

If f(c) = 0 (i.e., root lies in c), stop.

3. Repeat

Convergence Analysis
We shall label the intervals used by the algorithm as

[a, b] = [a0, b0], [a1, b1], [a2, b2], . . .

By construction

bn − an =
1
2
(bn−1 − an−1), n ≥ 1.

Thus, recursively,

bn − an =
1
2n

(b0 − a0), n ≥ 1. (1)

We also know a0 ≤ a1 ≤ a2 ≤ . . . ≤ b, and b0 ≥ b1 ≥ b2 ≥ . . . ≥ a, which shows
us that the sequences {an} and {bn} are both bounded and monotonic, and therefore
convergent.

Using standard limit laws, equation (1) gives us

lim
n→∞

bn − lim
n→∞

an = (b0 − a0) lim
n→∞

1
2n

= 0.

So we now also know that the sequences {an} and {bn} have the same limits, i.e.,

lim
n→∞

an = lim
n→∞

bn =: r. (2)

It remains to be shown that this number r is a root of the function f . From the
bisection algorithm we know f(an)f(bn) < 0. Or, taking limits

lim
n→∞

f(an)f(bn) ≤ 0.

Finally, using (2), we have

[f(r)]2 ≤ 0 =⇒ f(r) = 0.

1

Summarizing, the bisection method always converges (provided the initial interval con-
tains a root), and produces a root of f .

Errors

If the algorithm is stopped after n iterations, then r ∈ [an, bn]. Moreover, cn =
an + bn

2
is an approximation to the exact root. Note that the error can be bounded by

|r − cn| ≤ 1
2
(bn − an)

=
1

2n+1
(b0 − a0).

Therefore, the error after n steps of the bisection method is guaranteed to satisfy

|r − cn| ≤
1

2n+1
(b− a). (3)

Note: This bound is independent of the function f .

Remark: Recall that linear convergence requires

en ≤ Cen−1, (4)

with some constant C < 1. Thus,

en ≤ C2en−2 ≤ . . . ≤ Cne0 (5)

is necessary (but not sufficient) for linear convergence.
Now, for the bisection method,

en = |r − cn| ≤
1

2n+1
(b− a),

and
e0 =

b− a

2
.

Thus, condition (5) is satisfied, but we know from observation (e.g., in the Maple
worksheet on convergence) that the bisection method does not converge linearly,
i.e., condition (4) at each step is not satisfied.

Remark: The previous discussion may ”explain” why so many textbooks wrongly
attribute linear convergence to the bisection method.

Remark: The Maple worksheet 577 convergence.mws contains some code that pro-
duces an animation of several steps of this iterative procedure.

Implementation of the Bisection Method

Some details to consider (or slight modifications of the basic algorithm):

1. Do not compute cn =
an + bn

2
. This formula may become unstable. It is more

stable to use cn = an +
bn − an

2
, since here the second summand acts as a small

correction to the first one.

2

2. When picking the ”correct” sub-interval to continue with, don’t use the test
f(a)f(c)<

>0. Instead, use signf(a) 6= signf(c). The multiplication is more expen-
sive than a simple sign lookup (remember the standard scientific notation), and
it can also produce over- or underflow.

3. Implement some kind of (practical) stopping criterion. All of the following three
may be used:

(a) Specify a maximum number of allowable iterations in the for-loop con-
struction.

(b) Check if the error is small enough. We know the bound (3), so check, e.g.,
if

1
2n+1

(b− a) < δ,

where δ is some specified tolerance. This can also be used as a-priori esti-
mator for the number of iterations you may need.

(c) Check if f(c) is close enough to zero, i.e., check if

|f(c)| < ε,

where ε is another user-specified tolerance.

Note that the stopping criteria in 3 if used by themselves may fail (see the explanation
and figure on p.77 of the textbook).

3.1.1 Modification of the Bisection Method: Regula Falsi

The following discussion cannot be found in our textbook.
The modification comes from taken cn not as the average of an and bn, but as the
weighted average

cn =
|f(bn)|

|f(an)|+ |f(bn)|
an +

|f(an)|
|f(an)|+ |f(bn)|

bn. (6)

Note: We still have f(an)f(bn) < 0 (by assumption), and therefore (6) is equivalent to

cn =
f(bn)an − f(an)bn

f(bn)− f(an)
,

or
cn = bn −

f(bn)(bn − an)
f(bn)− f(an)

.

Notice that this last formula contains the reciprocal of the slope of the secant line at
an and bn, and the choice of cn can be illustrated by Figure 1.

We will come across another secant-based method later – the secant method.

We determine the new interval as for the bisection method, i.e.,

if f(a)f(c) < 0 (i.e., root lies in (a, c)), let a = a, b = c,

if f(c)f(b) < 0 (i.e., root lies in (c, b)), let a = c, b = b,

3

nc
nbna
x

y

Figure 1: Choice of cn for regula falsi.

if f(c) = 0 (i.e., root lies in c), stop.

Remark 1: For concave functions one of the endpoints remains fixed. Thus, the in-
terval [an, bn] does not get arbitrarily small.

Remark 2: It can be shown that the regula falsi converges linearly (see an example
later on when we discuss general fixed point iteration).

3.2 Newton’s Method

Let r be such that f(r) = 0, and x be an approximation of the root close to r, i.e,

x + h = r, h small.

The quantity h can be interpreted as the correction which needs to be added to x to
get the exact root r.

Recall Taylor’s expansion:

f(r) = f(x + h) = f(x) + hf ′(x) +O(h2),

or
f(r) ≈ f(x) + hf ′(x). (7)

Now r is a root of f , i.e., f(r) = 0, and so (7) can be restated as

0 ≈ f(x) + hf ′(x),

4

or
h ≈ − f(x)

f ′(x)
. (8)

Thus, using (8), an improved approximation to the root r is

r = x + h ≈ x− f(x)
f ′(x)

.

If we embed this into an iterative scheme and also provide an initial guess x0, then we
obtain
Newton iteration:

xn+1 = xn −
f(xn)
f ′(xn)

, n ≥ 0, (9)

with x0 as initial guess.

Graphical Interpretation:

Consider the tangent line to the graph of f at xn

y − f(xn) = f ′(xn)(x− xn),

or
y = f(xn)− (x− xn)f ′(xn).

Now we intersect with the x-axis, i.e., set y = 0. This yields

0 = f(xn)− (x− xn)f ′(xn) ⇐⇒ x = xn −
f(xn)
f ′(xn)

.

The last formula coincides with the Newton formula (9), thus, in Newton’s method,
a new approximation to the root of f is obtained by intersecting the tangent line
to f at a previous approximate root with the x-axis. Figure 2 illustrates this. The
entire iterative procedure can also be viewed as an animation in the Maple worksheet
577 convergence.mws on convergence.

Convergence

Theorem 3.1 If f has a simple zero at r and f ∈ C2[r − δ, r + δ] for a suitably
small δ, then Newton’s method will converge to the root r provided it is started with
x0 ∈ [r − δ, r + δ]. Moreover, convergence is quadratic, i.e., there exists a constant C
such that

|r − xn+1| ≤ C|r − xn|2, n ≥ 0.

Proof: We will use the notation en = r − xn for the error at step n. Then, following
(9),

en+1 = r − xn+1 = r − xn +
f(xn)
f ′(xn)

5

n+1xnx x

y

Figure 2: Graphical interpretation of Newton’s method.

= en +
f(xn)
f ′(xn)

=
enf ′(xn) + f(xn)

f ′(xn)
. (10)

On the other hand, via Taylor expansion we know

0 = f(r) = f(xn + en) = f(xn) + enf ′(xn) +
e2
n

2
f ′′(ξn),

with ξn between xn and xn + en = r. This immediately implies

enf ′(xn) + f(xn) = −1
2
e2
nf ′′(ξn). (11)

By inserting (11) into (10) we get

en+1 = −1
2

f ′′(ξn)
f ′(xn)

e2
n. (12)

Now, if the algorithm converges, then for xn and ξn close to r we have

|en+1| ≈
1
2
|f ′′(r)|
|f ′(r)|︸ ︷︷ ︸

const=:C

e2
n,

which establishes quadratic convergence.
Now we get to the rather technical part of verifying convergence. We begin by

letting δ > 0 and picking x0 such that

|r − x0| ≤ δ ⇐⇒ |e0| ≤ δ. (13)

6

Then ξ0 in (11) satisfies |r − ξ0| ≤ δ. Now consider (12) for n = 0:

|e1| =
1
2
|f ′′(ξ0)|
|f ′(x0)|

e2
0

and define

c(δ) :=
1
2

max|r−ξ0|≤δ |f ′′(ξ0)|
max|r−x0|≤δ |f ′(x0)|

.

Then
|e1| ≤ c(δ)e2

0 ≤ c(δ)|e0|δ,
where we have used (13) for the second inequality.

Next, we define ρ = δc(δ) and, if necessary, go back and adjust δ such that 0 ≤ ρ < 1.
Note that this can be done since c(δ) approaches a constant as δ → 0. Thus,

|e1| ≤ ρ|e0| < |e0|,

i.e., we have ensured that the error decreases. Finally, arguing recursively, we obtain

|en+1| ≤ ρn|e0|,

and
lim

n→∞
|en+1| ≤ |e0| lim

n→∞
ρn = 0.

♠
Remarks:

1. There are functions for which Newton’s method converges for any initial guess:

• If f ∈ C2(IR), f ′(x) > 0, f ′′(x) > 0, for all x, then Newton’s method
converges to the unique root for any x0.

• If f(a)f(b) < 0, f ′(x) 6= 0, x ∈ [a, b], f ′′ does not change sign on [a, b], and∣∣∣∣ f(a)
f ′(a)

∣∣∣∣ , ∣∣∣∣ f(b)
f ′(b)

∣∣∣∣ < b−a, then Newton’s method converges to the unique root

in [a, b] for any x0 ∈ [a, b].

2. |en+1| ≈
1
2
|f ′′(r)|
|f ′(r)|

e2
n implies that the number of significant digits in the approxi-

mate root doubles from one iteration to the next. However, this only is true if
we are close enough to the root.

Therefore, one could possibly design a hybrid method: start with bisection to get
reasonably close to the root, then use Newton for faster convergence.

3. The order of convergence is reduced at multiple roots, i.e., at a double root we
have only linear convergence (see HW 14, but also not HW 19).

4. One disadvantage is the need for the derivative of f . This has to be provided
by the user, and the code has to be able to handle this user-input. Possible
alternatives to Newton’s method are therefore the secant method (coming up
next) or Steffensen’s method (see HW 4).

Note: We will come back to the discussion of Newton’s method for systems of nonlinear
equations at the end of the semester.

7

3.3 The Secant Method

Recall the iteration formula in the Newton method

xn+1 = xn −
f(xn)
f ′(xn)

.

It has two main drawbacks:

• it requires coding of the derivative (for every new function f),

• it requires evaluation of f and f ′ in every iteration.

One of the most straight-forward work-around that comes to mind is to approximate
the continuous derivative f ′(xn) by the difference quotient, i.e.,

f ′(xn) ≈ f(xn)− f(xn−1)
xn − xn−1

.

Thus, we arrive at the
Secant method:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
, n ≥ 1, (14)

with x0 and x1 as initial guesses.

Graphical Interpretation:

Obviously, there will be an interpretation similar to that of Newton’s method (with
tangent lines replaced by secant lines). To see this, consider the secant to the graph of
f at the points (xn−1, f(xn−1)) and (xn, f(xn)):

y − f(xn) =
f(xn)− f(xn−1)

xn − xn−1
(x− xn).

If we consider intersection of this line with the x-axis, i.e., set y = 0, we get

f(xn)− f(xn−1)
xn − xn−1

xn − f(xn) =
f(xn)− f(xn−1)

xn − xn−1
x,

or, solving for x,

x = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

This latter formula is equivalent to the secant method (14). Thus, the next approxi-
mation to the root of f using the secant method is obtained by intersecting the secant
to two previous approximations with the x-axis. Figure 3 illustrates this fact. The
entire iterative procedure can also be viewed as an animation in the Maple worksheet
577 convergence.mws on convergence.

8

n+2x

n+1xnxn–1x x

y

Figure 3: Graphical interpretation of two steps of the secant method.

Convergence Analysis

Theorem 3.2 If f has a simple zero at r, f ∈ C2, and x0 and x1 are close to r, then
the secant method will converge to the root. Moreover,

|r − xn+1| ≈
1
2

∣∣∣∣f ′′(r)f ′(r)

∣∣∣∣1/α

|r − xn|α, n ≥ 0,

where α =
1 +

√
5

2
≈ 1.618 (the golden ratio).

Proof: We will use the notation en = r − xn for the error at step n. Then, using the
basic iteration formula (14) for the secant method along with some simple algebra,

en+1 = r − xn+1 = r −
[
xn − f(xn)

xn − xn−1

f(xn)− f(xn−1)

]
= r − xnf(xn)− xnf(xn−1)− f(xn)xn + f(xn)xn−1

f(xn)− f(xn−1)

=
rf(xn)− rf(xn−1) + xnf(xn−1)− f(xn)xn−1

f(xn)− f(xn−1)
.

Factoring, and then replacing r − xn by en (and analogously for n− 1) we get

en+1 =
en−1f(xn)− enf(xn−1)

f(xn)− f(xn−1)
.

9

Multiplying the right-hand side by
xn − xn−1

xn − xn−1
we have

en+1 =
xn − xn−1

f(xn)− f(xn−1)
en−1f(xn)− enf(xn−1)

xn − xn−1

=
xn − xn−1

f(xn)− f(xn−1)

f(xn)
en

− f(xn−1)
en−1

xn − xn−1
enen−1. (15)

Now we use Taylor’s theorem in the form

f(xn) = f(r − en) = f(r)︸︷︷︸
=0

−enf ′(r) +
1
2
e2
nf ′′(r) +O(e3

n),

which implies
f(xn)

en
= f ′(r) +

1
2
enf ′′(r) +O(e2

n). (16)

Similarly,
f(xn−1)

en−1
= f ′(r) +

1
2
en−1f

′′(r) +O(e2
n−1). (17)

Subtracting (17) from (16) we get

f(xn)
en

− f(xn−1)
en−1

=
1
2
(en − en−1)f ′′(r) +O(e2

n)−O(e2
n−1),

or
f(xn)

en
− f(xn−1)

en−1
≈ 1

2
(en − en−1)f ′′(r). (18)

Also, en = r − xn and en−1 = r − xn−1, so that en − en−1 = −(xn − xn−1), and (18)
can be written as

f(xn)
en

− f(xn−1)
en−1

≈ −1
2
(xn − xn−1)f ′′(r). (19)

Now we insert (19) into (15):

en+1 ≈
xn − xn−1

f(xn)− f(xn−1)︸ ︷︷ ︸
≈

1
f ′(r)

for xn, xn−1 close to r

(
−1

2

)
f ′′(r)enen−1.

Thus

|en+1| ≈
1
2

∣∣∣∣f ′′(r)f ′(r)

∣∣∣∣ |enen−1|

or
|en+1| ≈ C|enen−1|. (20)

This shows that the rate of convergence of the secant method is not quite quadratic.
In order to establish the exact rate of convergence we assume

lim
n→∞

|en+1|
|en|α

= A,

10

i.e., that |en+1| and |en|α grow asymptotically at the same rate. Our goal is to determine
the constants α and A. We will use the following notation to denote asymptotically
equal growth:

|en+1| ∼ A|en|α. (21)

(21) also implies
|en| ∼ A|en−1|α

or

|en−1| ∼
(|en|

A

)1/α

. (22)

Now we insert (21) and (22) into (20):

A|en|α ∼ C|en|
|en|1/α

A1/α
⇐⇒ A1+1/α

C︸ ︷︷ ︸
const

∼ |en|1+1/α−α. (23)

To satisfy (23), i.e., in order for the right-hand side to behave like a constant, we must
have

1 +
1
α
− α = 0.

But this is equivalent to
α2 − α− 1 = 0 (24)

or

α =
1±

√
1 + 4

2
.

We take the positive solution, i.e., α =
1 +

√
5

2
. Finally, this choice of α implies that

(23) reads as
A1+1/α

C
∼ 1,

or
A ∼ C

1
1+1/α = C

α
α+1

(24)
= C

α
α2 = C

1
α .

Since C =
1
2

∣∣∣∣f ′′(r)f ′(r)

∣∣∣∣, a look back at (21) finishes the proof. ♠

Comparison of Root Finding Methods

In Table 1 all of the methods covered thus far (including in HW problems) are
summarized. Their convergence order is listed, along with the number of initial points
required, as well as the number of function evaluations per iteration. For the regula falsi
and secant method straight-forward application of the iteration formula would imply
2 function evaluations per iteration, but by keeping the most recent value in memory,
this effort can be reduced to one evaluation per iteration after the first one. Other
special features not listed in the table are the positive fact that the bisection method
always converges (provided the two initial points enclose a root), and the negative
fact that Newton’s method requires the coding of derivatives.

Taking into account both order of convergence and amount of work per iteration,
a (more fair) comparison between Newton’s method and the secant method should be

11

order # initial pts # fct evals/it
bisection not linear 2 bracketing root 1

regula falsi α = 1 2 bracketing root 1 (with memory)
Newton α = 2 1 close 2

Steffensen α = 2 1 close 2
secant α = 1.618 2 close 1 (with memory)

Table 1: Comparison of root finding methods.

based on the comparison of 2 steps of the secant method to a single Newton step. Thus,
for the error for two secant steps we have

|en+2| ≈ A|en+1|α ≈ A (A|en|α)α

= A1+α|en|α
2
.

Now, from (24) we know α2 = α + 1 ≈ 2.618. Thus, the convergence rate for two steps
of the secant method (which roughly require the same amount of work as one step of
Newton’s method) is better than quadratic.

Remark: There are generalizations of the secant method. Suppose we have k + 1 ap-
proximations xn, xn−1, . . . , xn−k to r. Then we can determine the interpolation poly-
nomial P of degree k to f , i.e.,

P (xn−i) = f(xn−i), i = 0, . . . , k.

The next approximation xn+1 is the closest root of P to xn.
Note that for k = 1 this is just the secant method. For k = 2 this procedure results

in what is called Müller’s method. The cases k ≥ 3 are rarely used since practical
methods for finding roots of higher-degree polynomials are not available.

Polynomial interpolation will be studied in detail in Chapter 6 (most likely at the
beginning of next semester).

Müller’s method can also be used to find complex roots. It can be shown that
Müller’s method converges almost quadratically (α = 1.84) with only one function
evaluation per iteration. We do not give an explicit formula for Müller’s method here.
Figure 4 illustrates graphically one step of Müller’s method.

3.4 Fixed Points and Functional Iteration

Example: Consider the equation x2 − x − 1 = 0 whose solution is the golden ratio.
Equivalent formulations include

x = 1 +
1
x

,

x = x2 − 1, (25)
x = ±

√
1 + x.

We use these various equations as iteration formulas to find the golden ratio in the
Maple worksheet 577 FixedPoints.mws. The output is reproduced in Table 2.

12

n+1x nx

n–1xn–2x x

y

Figure 4: Graphical interpretation of Müller’s method.

n xn+1 = 1 +
1
xn

xn+1 = x2
n − 1 xn+1 =

√
1 + xn

0 1.500000 3.000000 1.732051
1 1.666667 8.000000 1.652892
2 1.600000 63.00000 1.628770
3 1.625000 3968.000 1.621348
4 1.615385 1.574502e+07 1.619058
5 1.619048 2.479057e+14 1.618350
6 1.617647 6.145726e+28 1.618132
7 1.618182 3.776995e+57 1.618064
8 1.617978 1.426569e+115 1.618043
9 1.618056 2.035099e+230 1.618037
10 1.618026 4.141629e+460 1.618035
11 1.618037 1.715309e+921 1.618034
12 1.618033 2.942284e+1842 1.618034
13 1.618034 8.657038e+3684 1.618034
14 1.618034 7.494430e+7369 1.618034

Table 2: Behavior of three different iteration formulas (25) for the golden ratio, x0 = 2.

13

y = 1+2/x

y = x

x

y

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

x

y = (x+2)^(1/2)

y = x

x

y

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

x

Figure 5: Graphical interpretation of fixed point iteration.

Obviously, one of the iterations does not converge, whereas the other two do. What
is it that distinguishes these iteration formulas? We will answer this question below.

Other examples of so-called fixed point iterations that we have used earlier are:

xn+1 = xn −
f(xn)
f ′(xn)

= F (xn), Newton,

xn+1 = b− f(b)(b− xn)
f(b)− f(xn)

= G(xn), regula falsi for concave functions,

xn+1 = xn −
f(xn)

f(xn + f(xn))− f(xn)
= H(xn), Steffensen.

In general, an algorithm for fixed point iteration is given by

Functional (or Picard) Iteration:

1. Let x0 be an initial guess.

2. For n from 0 to N do
xn+1 = F (xn).

We can illustrate the behavior of fixed point iteration graphically as in Figure 5. In that
figure we have used the two iteration functions F1(x) = 1 + 2/x and F2(x) =

√
x + 2

which both lead to a solution of x2 − x − 2 = 0. A vertical arrow corresponds to
evaluation of the function F at a point, and a horizontal arrow pointing to the line
y = x indicates that the result of the previous function evaluation is used as the
argument for the next step.

If the fixed point algorithm is to be applied successfully, we need:

1. The iteration is well-defined, i.e., for a given x0 the iterates x1, x2, . . . can be
computed.

14

As a counterexample consider F (x) = −
√

1 + x. Then x2 = −
√

1−
√

1 + x0︸ ︷︷ ︸
=x1

,

which is not well-defined for x0 > 0.

2. The sequence converges, i.e., lim
n→∞

xn = s exists.

3. s is a fixed point of F , i.e., F (s) = s.

In order to provide a theorem that guarantees 1–3, we first define

Definition 3.3 A function (mapping) F is called contractive if there exists a λ < 1
such that

|F (x)− F (y)| ≤ λ|x− y| (26)

for all x, y in the domain of F .

Remark: (26) is also referred to as Lipschitz continuity of F .

Lemma 3.4 If F is contractive on [a, b] then F is continuous on [a, b].

Proof: If F is contractive, then by definition,

|F (x)− F (y)| ≤ λ|x− y| for all x, y ∈ [a, b],

where λ < 1. Now,

lim
y→x

|F (x)− F (y)| ≤ λ︸︷︷︸
<1

lim
y→x

|y − x|︸ ︷︷ ︸
=0

= 0.

So F is continuous. ♠

Note: The converse is not true, i.e., continuity does not imply Lipschitz continuity.
Ex.: F (x) = |x| is continuous on [−1, 1], but

|F (0)− F (1)| = ||0| − |1|| = 1

and |0 − 1| = 1. Therefore, no λ < 1 exists such that contraction property (26) is
satisfied for x = 0 and y = 1.

A sufficient condition for F to be a contraction has to be stronger. For example

Lemma 3.5 If F is differentiable with |F ′(x)| ≤ λ < 1 on [a, b], then F is a contrac-
tion.

Proof: The contractive property |F (x)− F (y)| ≤ λ|x− y| is equivalent to

|F (x)− F (y)|
|x− y|

≤ λ.

But, by the Mean Value Theorem, the left-hand side above is equal to F ′(ξ) for some
ξ between x, y ∈ [a, b]. Thus, if F ′ satisfies the stated requirement (for all x ∈ [a, b]),
then F is a contraction. ♠

The central theorem of this section is

15

Theorem 3.6 (Contractive Mapping Theorem) Let C be a closed subset of the
real line and F a contractive mapping of C into itself. Then F has a unique fixed point
s. Moreover, s = lim

n→∞
xn, where xn+1 = F (xn) and x0 is any starting point in C.

Proof: Consider

xn = x0 + (x1 − x0) + (x2 − x1) + . . . + (xn − xn−1).

Thus, lim
n→∞

xn exists if and only if lim
n→∞

n∑
k=1

(xk − xk−1) =
∞∑

n=1

(xn − xn−1) exists.

To show that the infinite series converges, we show that it converges even absolutely,
i.e., we show that

∞∑
n=1

|xn − xn−1| converges.

To see this, consider (using functional iteration)

|xn − xn−1| = |F (xn−1)− F (xn−2)|.

Using the contractivity of F this can be bounded by λ|xn−1 − xn−2|. Repeating this
process recursively we arrive at

|xn − xn−1| ≤ λn−1|x1 − x0|. (27)

Thus,

∞∑
n=1

|xn − xn−1| ≤
∞∑

n=1

λn−1|x1 − x0|

= |x1 − x0|
∞∑

n=1

λn−1

= |x1 − x0|
1

1− λ
,

where we have used the formula for the sum of a geometric series in the last step.
Obviously, the infinite series converges, and thus lim

n→∞
xn exists.

Now we define s := lim
n→∞

xn to be this limit. We can see that s is a fixed point of
F since

F (s) = F (lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

xn+1 = s,

where we have made use of the continuity of F (cf. Lemma 3.4) and the process of
functional iteration.

To see the uniqueness of s we consider two (different) fixed points s and t. Then

|s− t| = |F (s)− F (t)| ≤ λ︸︷︷︸
<1

|s− t| < |s− t|.

Obviously, this has led to a contradiction (unless s and t are equal).
Finally, s ∈ C since s = lim

n→∞
xn with xn ∈ C and C a closed set. ♠

16

Corollary 3.7 If F maps an interval [a, b] into itself and |F ′(x)| ≤ λ < 1 for all
x ∈ [a, b], then F has a unique fixed point s in [a, b] which is the limit of functional
iteration xn+1 = F (xn).

Examples: We now take another look at the examples given at the beginning of the
section (25).

1. F1(x) = 1 +
1
x

with F ′
1(x) = − 1

x2
. So

|F ′
1(x)| =

∣∣∣∣ 1
x2

∣∣∣∣ < 1 for x > 1.

2. F2(x) = x2 − 1 with F ′
2(x) = 2x. So

|F ′
2(x)| = |2x| < 1 only for x < 1/2.

3. F3(x) =
√

1 + x with F ′
3(x) =

1
2
√

1 + x
. So

|F ′
3(x)| =

∣∣∣∣ 1
2
√

1 + x

∣∣∣∣ < 1 for x > −3
4
.

Corollary 3.8 If F is as in the Contractive Mapping Theorem (or as in Cor. 3.7)
then

|s− xn| ≤
λn

1− λ
|x1 − x0|, n ≥ 1.

Proof: Consider (27) with n replaced by n + 1, i.e.,

|xn+1 − xn| ≤ λn|x1 − x0|, n ≥ 0.

Now, for any m > n ≥ 0

|xm − xn| = |xm − xm−1 + xm+1 − . . . + xn+1 − xn|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ . . . + |xn+1 − xn|
≤ λm−1|x1 − x0|+ λm−2|x1 − x0|+ . . . + λn|x1 − x0|
= λn

(
1 + λ + λ2 + . . . + λm−n−1

)
|x1 − x0|.

From above we know lim
m→∞

xm = s, so

|s− xn| = lim
m→∞

|xm − xn|

≤ λn
∞∑

k=0

λk|x1 − x0|

=
λn

1− λ
|x1 − x0|.

♠

17

Remark: Corollary 3.8 relates the bound on |F ′(x)| to the rate of convergence of the
fixed point iteration. In particular, |en| = |s− xn| will go to zero fast if λ is small, i.e.,
|F ′(x)| is small.

In fact,
Detailed Convergence Analysis

Consider

en+1 = s− xn+1

= F (s)− F (xn),

where we have used the functional iteration along with the fact that s is a fixed point
of F . By the Mean Value Theorem the previous is equal to F ′(ξn)(s− xn) for some ξn

between s and xn. Thus,
en+1 = F ′(ξn)en.

Taylor’s Theorem implies

en+1 = s− xn+1 = F (s)− F (xn)
= F (s)− F (s− en)

= F (s)−
[
F (s)− enF ′(s) +

1
2
e2
nF ′′(s) + . . .

]
.

In other words,

en+1 = enF ′(s)− 1
2
e2
nF ′′(s) + . . . +

(−1)k

(k − 1)!
ek−1
n F (k−1)(s) +

(−1)k+1

k!
ek
nF (k)(ξn).

If F ′(s) = F ′′(s) = . . . = F (k−1)(s) = 0 we get

|en+1| =
|ek

n|
k!
| F (k)(ξn)︸ ︷︷ ︸
≈F (k)(s) for convergent iteration

|.

Equivalently, we can write

lim
n→∞

|en+1|
|en|k

=
|F (k)(s)|

k!
= const.

Thus, k gives us the order of convergence of the fixed point iteration defined by F .
This means that if we can find k such that F (k)(s) 6= 0 and F (j)(s) = 0, j < k,

then the iteration xn+1 = F (xn) converges with order k. For linear convergence we
also require that |F ′(s)| < 1.

Example: (Rate of convergence of regula falsi) Recall that the iteration is defined by

xn+1 = b− f(b)(b− xn)
f(b)− f(xn)

,

so
F (x) = b− f(b)(b− x)

f(b)− f(x)

18

and

F ′(x) = −−f(b) (f(b)− f(x)) + f(b)(b− x)f ′(x)
(f(b)− f(x))2

.

Therefore,

F ′(s) =
f(b) (f(b)− f(s))− f(b)(b− s)f ′(s)

(f(b)− f(s))2
. (28)

Remember that we are finding the root of the function f , i.e., f(s) = 0. Therefore,
(28) simplifies to

F ′(s) =
(f(b))2 − f(b)(b− s)f ′(s)

(f(b))2

= 1− f ′(s)
b− s

f(b)

= 1− f ′(s)
b− s

f(b)− f(s)︸︷︷︸
=0

. (29)

Note that
f(b)− f(s)

b− s
= f ′(ξ) for some s < ξ < b.

Furthermore, concavity of the function f (which we assume for this form of the
regula falsi) implies that f ′ is increasing.

Therefore, f ′(ξ) > f ′(s) and
f ′(s)
f ′(ξ)

< 1. Using this in (29) we see that 0 < F ′(s) < 1,

and we have proven linear convergence.

Aitken Acceleration
Can be used to accelerate the convergence of any linearly convergent iteration

scheme (not only fixed point iteration).
Recall the definition of linear convergence

lim
n→∞

|en+1|
|en|

= C, 0 < C < 1,

i.e., for large n we have
en+1 ≈ Cen. (30)

Then we also have en+2 ≈ Cen+1 or

C ≈ en+2

en+1
. (31)

Inserting (31) into (30) we get
e2
n+1 ≈ en+2en.

Next we replace en by s− xn for all relevant values of n. This leads to

(s− xn+1)2 ≈ (s− xn+2)(s− xn)
⇐⇒ s2 − 2sxn+1 + x2

n+1 ≈ s2 − s(xn+2 + xn) + xn+2xn

19

or

s ≈
xn+2xn − x2

n+1

xn+2 − 2xn+1 + xn
. (32)

We now introduce some notation commonly used in this context. Basic forward
differences are defined as

∆xn = xn+1 − xn,

and higher-order forward differences are defined recursively, i.e.,

∆2xn = ∆(∆xn) = ∆(xn+1 − xn) = xn+2 − xn+1 − (xn+1 − xn) = xn+2 − 2xn+1 + xn.

Thus (32) implies

s ≈
xn+2xn − x2

n+1

∆2xn
=: x̂n+2. (33)

Claim: The {x̂n} sequence converges faster than the {xn} sequence, i.e.,

lim
n→∞

ên

en
= 0.

Proof: First we show that the errors satisfy (33), i.e.,

ên+2 =
en+2en − e2

n+1

∆2en
. (34)

This is true since the denominator of the right-hand side yields

∆2en = en+2 − 2en+1 + en

= s− xn+2 − 2(s− xn+1) + s− xn

= −∆2xn,

whereas for the numerator we get

en+2en − e2
n+1 = (s− xn+2)(s− xn)− (s− xn+1)2

= s2 − s(xn+2 + xn) + xn+2xn − s2 + 2sxn+1 − x2
n+1

= xn+2xn − x2
n+1 − s∆2xn

(33)
= x̂n+2∆2xn − s∆2xn

= −ên+2∆2xn

Combining the two partial results we get

en+2en − e2
n+1

∆2en
=
−ên+2∆2xn

−∆2xn
= ên+2.

This establishes (34). Now we compute lim
n→∞

ên+2

en+2
. Since {xn} converges linearly we

can write

en+1 = (c + δn)en, where δn → 0 as n →∞, and 0 < c < 1. (35)

20

Using (34) we get

ên+2

en+2
=

en −
e2
n+1

en+2

∆2en
=

en −
e2
n+1

en+2

en+2 − 2en+1 + en
.

Factoring en from the numerator and denominator the previous expression becomes

en

(
1− e2

n+1

enen+2

)
en

(
en+2

en
− 2 en+1

en
+ 1

) ,

or, using (35),
ên+2

en+2
=

1− c+δn
c+δn+1

en+2

en+1

en+1

en
− 2 en+1

en
+ 1

.

Finally, we can also apply (35) to the denominator to arrive at

ên+2

en+2
=

1− c+δn
c+δn+1

(c + δn+1)(c + δn)− 2(c + δn) + 1
,

so that, for δn → 0 we have

ên+2

en+2
→ 0

c2 − 2c + 1
=

0
(c− 1)2

,

which verifies the claim (as 0 < c < 1 by assumption). ♠

Implementation of Aitken’s Acceleration

1. Rewrite (33) as

x̂n+2 = xn+2 −
(∆xn+1)2

∆2xn
(see homework). (36)

This is more stable since an existing quantity is updated by a small correction.

2. Even with (36) the second difference ∆2xn in the denominator can lead to can-
cellation of significant digits and blow-up.

3. Here is a practical algorithm (sometimes referred to as Steffensen’s method for
functional iteration):

Input iteration function F , initial guess x0

for k = 0, 1, 2, . . . do

z0 = xk

% Perform 2 steps of regular fixed point iteration:
z1 = F (z0)
z2 = F (z1)
% Aitken update

xk+1 = z2 −
(z2 − z1)2

z2 − 2z1 + z0

21

end do

You will implement this with F (x) =
√

10/(x + 4) and compare it’s performance
with regular functional iteration on the homework.

Remarks:

1. Since cancellation can occur when iterates are close, one needs to stop the algo-
rithm in this case.

2. Aitken’s acceleration applied to partial sums of convergent series yields the sum
of the series. You will do as a homework problem:

Show, if {xn} is the sequence of partial sums of the geometric series
∞∑

k=0

ark,

|r| < 1, then x̂2 =
a

1− r
(the sum of the series).

3. Aitken’s acceleration may also yield the ”sum” of divergent series!

22

