
7 Gaussian Elimination and LU Factorization

In this final section on matrix factorization methods for solving Ax = b we want to
take a closer look at Gaussian elimination (probably the best known method for solving
systems of linear equations).

The basic idea is to use left-multiplication of A ∈ Cm×m by (elementary) lower
triangular matrices, L1, L2, . . . , Lm−1 to convert A to upper triangular form, i.e.,

Lm−1Lm−2 . . . L2L1︸ ︷︷ ︸
=eL

A = U.

Note that the product of lower triangular matrices is a lower triangular matrix, and
the inverse of a lower triangular matrix is also lower triangular. Therefore,

L̃A = U ⇐⇒ A = LU,

where L = L̃−1. This approach can be viewed as triangular triangularization.

7.1 Why Would We Want to Do This?

Consider the system Ax = b with LU factorization A = LU . Then we have

L Ux︸︷︷︸
=y

= b.

Therefore we can perform (a now familiar) 2-step solution procedure:

1. Solve the lower triangular system Ly = b for y by forward substitution.

2. Solve the upper triangular system Ux = y for x by back substitution.

Moreover, consider the problem AX = B (i.e., many different right-hand sides that
are associated with the same system matrix). In this case we need to compute the
factorization A = LU only once, and then

AX = B ⇐⇒ LUX = B,

and we proceed as before:

1. Solve LY = B by many forward substitutions (in parallel).

2. Solve UX = Y by many back substitutions (in parallel).

In order to appreciate the usefulness of this approach note that the operations count
for the matrix factorization is O(2

3m3), while that for forward and back substitution is
O(m2).

Example Take the matrix

A =

 1 1 1
2 3 5
4 6 8

59

and compute its LU factorization by applying elementary lower triangular transforma-
tion matrices.

We choose L1 such that left-multiplication corresponds to subtracting multiples of
row 1 from the rows below such that the entries in the first column of A are zeroed out
(cf. the first homework assignment). Thus

L1A =

 1 0 0
−2 1 0
−4 0 1

 1 1 1
2 3 5
4 6 8

 =

 1 1 1
0 1 3
0 2 4

 .

Next, we repeat this operation analogously for L2 (in order to zero what is left in
column 2 of the matrix on the right-hand side above):

L2(L1A) =

 1 0 0
0 1 0
0 −2 1

 1 1 1
0 1 3
0 2 4

 =

 1 1 1
0 1 3
0 0 −2

 = U.

Now L = (L2L1)
−1 = L−1

1 L−1
2 with

L−1
1 =

 1 0 0
2 1 0
4 0 1

 and L−1
2 =

 1 0 0
0 1 0
0 2 1

 ,

so that

L =

 1 0 0
2 1 0
4 2 1

 .

Remark Note that L always is a unit lower triangular matrix, i.e., it has ones on the
diagonal. Moreover, L is always obtained as above, i.e., the multipliers are accumulated
into the lower triangular part with a change of sign.

The claims made above can be verified as follows. First, we note that the multipliers
in Lk are of the form

`jk =
ajk

akk
, j = k + 1, . . . ,m,

so that

Lk =

1
. . .

1
−`k+1,k 1

...
. . .

−`m,k 1

.

Now, let

`k =

0
...
0

`k+1,k
...

`m,k

.

60

Then Lk = I − `ke
∗
k, and therefore

(I − `ke
∗
k)︸ ︷︷ ︸

=Lk

(I + `ke
∗
k)︸ ︷︷ ︸

L−1
k

= I − `ke
∗
k`ke

∗
k = I,

since the inner product e∗k`k = 0 because the only nonzero entry in ek (the 1 in the k-th
position) does not “hit” any nonzero entries in `k which start in the k + 1-st position.

So, for any k we have

L−1
k =

1
. . .

1
`k+1,k 1

...
. . .

`m,k 1

as claimed.

In addition,

L−1
k L−1

k+1 = (I + `ke
∗
k)
(
I + `k+1e

∗
k+1

)
= I + `ke

∗
k + `k+1e

∗
k+1 + `k e∗k`k+1︸ ︷︷ ︸

=0

ek+1

=

1
. . .

1
`k+1,k 1

... `k+2,k+1
...

. . .
`m,k `m,k+1 1

,

and in general we have

L = L−1
1 . . . L−1

m−1 =

1

`2,1 1
... `3,2

. . .
... 1

`m,1 `m,2 . . . `m,m−1 1

 .

We can summarize the factorization in

Algorithm (LU Factorization)

Initialize U = A, L = I

for k = 1 : m− 1

for j = k + 1 : m

61

L(j, k) = U(j, k)/U(k, k)
U(j, k : m) = U(j, k : m)− L(j, k)U(k, k : m)

end

end

Remark 1. In practice one can actually store both L and U in the original matrix
A since it is known that the diagonal of L consists of all ones.

2. The LU factorization is the cheapest factorization algorithm. Its operations count
can be verified to be O(2

3m3).

However, LU factorization cannot be guaranteed to be stable. The following exam-
ples illustrate this fact.

Example A fundamental problem is given if we encounter a zero pivot as in

A =

 1 1 1
2 2 5
4 6 8

 =⇒ L1A =

 1 1 1
0 0 3
0 2 4

 .

Now the (2,2) position contains a zero and the algorithm will break down since it will
attempt to divide by zero.

Example A more subtle example is the following backward instability. Take

A =

 1 1 1
2 2 + ε 5
4 6 8

with small ε. If ε = 1 then we have the initial example in this chapter, and for ε = 0
we get the previous example.

LU factorization will result in

L1A =

 1 1 1
0 ε 3
0 2 4

and

L2L1A =

 1 1 1
0 ε 3
0 0 4− 6

ε

 = U.

The multipliers were

L =

 1 0 0
2 1 0
4 2

ε 1

 .

Now we assume that a right-hand side b is given as

b =

 1
0
0

and we attempt to solve Ax = b via

62

1. Solve Ly = b.

2. Solve Ux = y.

If ε is on the order of machine accuracy, then the 4 in the entry 4 − 6
ε in U is

insignificant. Therefore, we have

Ũ =

 1 1 1
0 ε 3
0 0 −6

ε

 and L̃ = L,

which leads to

L̃Ũ =

 1 1 1
2 2 + ε 5
4 6 4

 6= A.

In fact, the product is significantly different from A. Thus, using L̃ and Ũ we are
not able to solve a “nearby problem”, and thus the LU factorization method is not
backward stable.

If we use the factorization based on L̃ and Ũ with the above right-hand side b, then
we obtain

x̃ =

 11
2 −

2
3ε

−2
2
3ε− 2

3

 ≈
 11

2
−2
−2

3

 .

Whereas if we were to use the exact factorization A = LU , then we get the exact
answer

x =

 4ε−7
2ε−3

2
2ε−3

−2 ε−1
2ε−3

 ≈
 7

3
−2

3
−2

3

 .

Remark Even though L̃ and Ũ are close to L and U , the product L̃Ũ is not close to
LU = A and the computed solution x̃ is worthless.

7.2 Pivoting

Example The breakdown of the algorithm in our earlier example with

L1A =

 1 1 1
0 0 3
0 2 3

can be prevented by simply swapping rows, i.e., instead of trying to apply L2 to L1A
we first create

PL1A =

 1 0 0
0 0 1
0 1 0

L1A =

 1 1 1
0 2 3
0 0 3

— and are done.

63

More generally, stability problems can be avoided by swapping rows before applying
Lk, i.e., we perform

Lm−1Pm−1 . . . L2P2L1P1A = U.

The strategy we use for swapping rows in step k is to find the largest element in column
k below (and including) the diagonal — the so-called pivot element — and swap its row
with row k. This process is referred to as partial (row) pivoting. Partial column pivoting
and complete (row and column) pivoting are also possible, but not very popular.

Example Consider again the matrix

A =

 1 1 1
2 2 + ε 5
4 6 8

The largest element in the first column is the 4 in the (3, 1) position. This is our first
pivot, and we swap rows 1 and 3. Therefore

P1A =

 0 0 1
0 1 0
1 0 0

 1 1 1
2 2 + ε 5
4 6 8

 =

 4 6 8
2 2 + ε 5
1 1 1

 ,

and then

L1P1A =

 1 0 0
−1

2 1 0
−1

4 0 1

 4 6 8
2 2 + ε 5
1 1 1

 =

 4 6 8
0 ε− 1 1
0 −1

2 −1

 .

Now we need to pick the second pivot element. For sufficiently small ε (in fact, unless
1
2 < ε < 3

2), we pick ε − 1 as the largest element in the second column below the first
row. Therefore, the second permutation matrix is just the identity, and we have

P2L1P1A =

 1 0 0
0 1 0
0 0 1

 4 6 8
0 ε− 1 1
0 −1

2 −1

 =

 4 6 8
0 ε− 1 1
0 −1

2 −1

 .

To complete the elimination phase, we need to perform the elimination in the second
column:

L2P2L1P1A =

 1 0 0
0 1 0
0 1

2(ε−1) 1

 4 6 8
0 ε− 1 1
0 −1

2 −1

 =

 4 6 8
0 ε− 1 1
0 0 3−2ε

2(ε−1)

 = U.

The lower triangular matrix L is given by

L = L−1
1 L−1

2 =

 1 0 0
1
2 1 0
1
4 − 1

2(ε−1) 1

 ,

and assuming that ε− 1 ≈ −1 we get

L̃ =

 1 0 0
1
2 1 0
1
4

1
2 1

 and Ũ =

 4 6 8
0 −1 1
0 0 −3

2

 .

64

If we now check the computed factorization L̃Ũ , then we see

L̃Ũ =

 4 6 8
2 2 5
1 1 1

 = PÃ,

which is just a permuted version of the original matrix A with permutation matrix

P = P2P1 =

 0 0 1
0 1 0
1 0 0

 .

Thus, this approach was backward stable.
Finally, since we have the factorization PA = LU , we can solve the linear system

Ax = b as
PAx = Pb ⇐⇒ LUx = Pb,

and apply the usual two-step procedure

1. Solve the lower triangular system Ly = Pb for y.

2. Solve the upper triangular system Ux = y for x.

This yields

x =

 −7+4ε
−3+2ε

2
2ε−3

−2 ε−1
2ε−3

 ≈
 7

3
−2

3
−2

3

 .

If we use the rounded factors L̃ and Ũ instead, then the computed solution is

x̃ =

 7
3
−2

3
−2

3

 ,

which is the exact answer to the problem (see also the Maple worksheet 473 LU.mws).

In general, LU factorization with pivoting results in

PA = LU,

where P = Pm−1Pm−2 . . . P2P1, and L = (L′m−1L
′
m−2 . . . L′2L

′
1)
−1 with

L′k = Pm−1 . . . Pk+1LkP
−1
k+1 . . . P−1

m−1,

i.e., L′k is the same as Lk except that the entries below the diagonal are appropriately
permuted. In particular, L′k is still lower triangular.

Remark Since the permutation matrices used here involve only a single row swap each
we have P−1

k = Pk (while in general, of course, P−1 = P T).

In the example above L′2 = L2, and L′1 = P2L1P
−1
2 = L1 since P2 = I.

65

Remark Due to the pivoting strategy the multipliers will always satisfy |`ij | ≤ 1.

A possible interpretation of the pivoting strategy is that the matrix P is deter-
mined so that it would yield a permuted matrix A whose standard LU factorization is
backward stable. Of course, we do not know how to do this in advance, and so the P
is determined as the algorithm progresses.

An algorithm for the factorization of an m×m matrix A is given by

Algorithm (LU Factorization with Partial Pivoting)

Initialize U = A, L = I, P = I

for k = 1 : m− 1

find i ≥ k to maximize |U(i, k)|
U(k, k : m)←→ U(i, k : m)

L(k, 1 : k − 1)←→ L(i, 1 : k − 1)

P (k, :)←→ P (i, :)

for j = k + 1 : m

L(j, k) = U(j, k)/U(k, k)
U(j, k : m) = U(j, k : m)− L(j, k)U(k, k : m)

end

end

The operations count for this algorithm is also O(2
3m2). However, while the swaps

for partial pivoting require O(m2) operations, they would require O(m3) operations in
the case of complete pivoting.

Remark The algorithm above is not really practical since one would usually not phys-
ically swap rows. Instead one would use pointers to the swapped rows and store the
permutation operations instead.

7.3 Stability

We saw earlier that Gaussian elimination without pivoting is can be unstable. Accord-
ing to our previous example the algorithm with pivoting seems to be stable. What can
be proven theoretically?

Since the entries of L are at most 1 in absolute value, the LU factorization becomes
unstable if the entries of U are unbounded relative to those of A (we need ‖L‖‖U‖ =
O(‖PA‖). Therefore we define a growth factor

ρ =
maxi,j |U(i, j)|
maxi,j |A(i, j)|

.

One can show

Theorem 7.1 Let A ∈ Cm×m. Then LU factorization with partial pivoting guarantees
that ρ ≤ 2m−1.

66

This bound is unacceptably high, and indicates that the algorithm (with pivoting)
can be unstable. The following (contrived) example illustrates this.

Example Take

A =

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 .

Then LU factorization produces the following sequence of matrices:
1 0 0 0 1
0 1 0 0 2
0 −1 1 0 2
0 −1 −1 1 2
0 −1 −1 −1 2

 −→

1 0 0 0 1
0 1 0 0 2
0 0 1 0 4
0 0 −1 1 4
0 0 −1 −1 4

−→

1 0 0 0 1
0 1 0 0 2
0 0 1 0 4
0 0 0 1 8
0 0 0 −1 8

 −→

1 0 0 0 1
0 1 0 0 2
0 0 1 0 4
0 0 0 1 8
0 0 0 0 16

 = U,

and we see that the largest element in U is 16 = 2m−1.

Remark BUT in practice it turns out that matrices which such large growth factors
almost never arise. For most practical cases a realistic bound on ρ seems to be

√
m.

This is still an active area of research and some more details can be found in the
[Trefethen/Bau] book.

In summary we can say that for most practical purposes LU factorization with
partial pivoting is considered to be a stable algorithm.

7.4 Cholesky Factorization

In the case when the matrix A is Hermitian (or symmetric) positive definite we can
devise a faster (and more stable) algorithm.

Recall that A ∈ Cm×m is Hermitian if A∗ = A. This implies x∗Ay = y∗Ax for any
x,y ∈ Cm (see homework for details). If we let y = x then we see that x∗Ax is real.

Now, if x∗Ax > 0 for any x 6= 0 then A is called Hermitian positive definite.

Remark Symmetric positive definite matrices are defined analogously with ∗ replaced
by T .

7.4.1 Some Properties of Positive Definite Matrices

Assume A ∈ Cm×m is positive definite.

1. If X ∈ Cm×n has full rank, then X∗AX ∈ Cn×n is positive definite.

67

2. Any principal submatrix (i.e., the intersection of a set of rows and the corre-
sponding columns) of A is positive definite.

3. All diagonal entries of A are positive and real.

4. The maximum element of A is on the diagonal.

5. All eigenvalues of A are positive.

7.4.2 How Does Cholesky Factorization Work?

Consider the Hermitian positive definite A ∈ Cm×m in block form

A =
[

1 w∗

w K

]
and apply the first step of the LU factorization algorithm. Then

A =
[

1 0T

w I

] [
1 w∗

0 K −ww∗

]
.

The main idea of the Cholesky factorization algorithms is to take advantage of the fact
that A is Hermitian and perform operations symmetrically, i.e., also zero the first row.
Thus

A =
[

1 0T

w I

] [
1 0T

0 K −ww∗

] [
1 w∗

0 I

]
.

Note that the three matrices are lower triangular, block-diagonal, and upper triangular
(in fact the adjoint of the lower triangular factor).

Now we continue iteratively. However, in general A will not have a 1 in the upper
left-hand corner. We will have to be able to deal with an arbitrary (albeit positive)
entry in the (1,1) position. Therefore we reconsider the first step with slightly more
general notation, i.e.,

A =
[

a11 w∗

w K

]
so that

A =

[√
a11 0T

1√
a11

w I

] [
1 0T

0 K − 1
a11

ww∗

][√
a11

1√
a11

w∗

0 I

]
= R∗

1A1R1.

Now we can iterate on the inner matrix A1. Note that the (1,1) entry of K −ww∗/a11

has to be positive since A was positive definite and R1 is nonsingular. This guarantees
that A1 = R−∗

1 AR−1
1 is positive definite and therefore has positive diagonal entries.

The iteration yields
A1 = R∗

2A2R2

so that
A = R∗

1R
∗
2A2R2R1,

and eventually
A = R∗

1R
∗
2 . . . R∗

m︸ ︷︷ ︸
=R∗

Rm . . . R2R1︸ ︷︷ ︸
=R

,

68

the Cholesky factorization of A. Note that R is upper triangular and its diagonal is
positive (because of the square roots). Thus we have proved

Theorem 7.2 Every Hermitian positive definite matrix A has a unique Cholesky fac-
torization A = R∗R with R an upper triangular matrix with positive diagonal entries.

Example Consider

A =

 4 2 4
2 5 6
4 6 9

 .

Cholesky factorization as explained above yields the sequence

A =

 2 0 0
1 1 0
2 0 1

 1 0 0
0 4 4
0 4 5

 2 1 2
0 1 0
0 0 1

=

 2 0 0
1 1 0
2 0 1

 1 0 0
0 2 0
0 2 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 2 2
0 0 1

 2 1 2
0 1 0
0 0 1

 .

Distributing 2 copies of the identity matrix in the middle we arrive at

R∗ =

 2 0 0
1 2 0
2 2 1

 .

Algorithm (Cholesky Factorization)

initialize R = upper triangular part of A (including the diagonal)

for k = 1 : m

for j = k + 1 : m

R(j, j : m) = R(j, j : m)−R(k, j : m)R(k,j)
R(k,k)

end

R(k, k : m) = R(k, k : m)/
√

R(k, k)

end

The operations count for the Cholesky algorithm can be computed as

m∑
k=1

(m− k + 1) +
m∑

j=k+1

(2(m− j + 1) + 1)

 =
1
3
m3 + m2 − 1

m
.

Thus the count is O(1
3m3), which is half the amount needed for the LU factorization.

Another nice feature of Cholesky factorization is that it is always stable — even
without pivoting.

69

Remark The simplest (and cheapest) way to test whether a matrix is positive definite
is to run Cholesky factorization it. If the algorithm works it is, if not, it isn’t.

The solution of Ax = b with Hermitian positive definite A is given by:

1. Compute Cholesky factorization A = R∗R.

2. Solve the lower triangular system R∗y = b for y.

3. Solve the upper triangular system Rx = y for x.

70

