
1 Ordinary Differential Equations

1.0 Mathematical Background

1.0.1 Smoothness

Definition 1.1 A function f defined on [a, b] is continuous at ξ ∈ [a, b] if lim
x→ξ

f(x) =

f(ξ).

Remark Note that this implies existence of the quantities on both sides of the equa-
tion.

f is continuous on [a, b], i.e., f ∈ C[a, b], if f is continuous at every ξ ∈ [a, b].
If f (ν) is continuous on [a, b], then f ∈ C(ν)[a, b].
Alternatively, one could start with the following ε-δ definition:

Definition 1.2 A function f defined on [a, b] is continuous at ξ ∈ [a, b] if for every
ε > 0 there exists a δε > 0 (that depends on ξ) such that |f(x) − f(ξ)| < ε whenever
|x− ξ| < δε.

FIGURE

Example (A function that is continuous, but not uniformly) f(x) = 1
x with FIGURE.

Definition 1.3 A function f is uniformly continuous on [a, b] if it is continuous with
a uniform δε for all ξ ∈ [a, b], i.e., independent of ξ.

Important for ordinary differential equations is

Definition 1.4 A function f defined on [a, b] is Lipschitz continuous on [a, b] if there
exists a number λ such that |f(x)− f(y)| ≤ λ|x− y| for all x, y ∈ [a, b]. λ is called the
Lipschitz constant.

Remark 1. In fact, any Lipschitz continuous function is uniformly continuous, and
therefore continuous.

2. For a differentiable function with bounded derivative we can take

λ = max
ξ∈[a,b]

|f ′(ξ)|,

and we see that Lipschitz continuity is “between” continuity and differentiability.

3. If the function f is Lipschitz continuous on [a, b] with Lipschitz constant λ, then
f is almost everywhere differentiable in [a, b] with |f ′(x)| ≤ λ. In other words,
Lipschitz continuous functions need not be differentiable everywhere in [a, b].

4. See also Assignment 1.

1

1.0.2 Polynomials

A polynomial of degree at most ν is of the form

p(x) =
ν∑

k=0

pkx
k

with pk, x ∈ IR. Notation: p ∈ IPν .

Theorem 1.5 (Taylor’s Theorem) If f ∈ Cν [a, b] and f (ν+1) exists on (a, b), then for
any x ∈ [a, b]

f(x) =
ν∑

k=0

1
k!
f (k)(ξ)(x− ξ)k

︸ ︷︷ ︸
Taylor polynomial

+
1

(ν + 1)!
f (ν+1)(η)(x− ξ)ν+1︸ ︷︷ ︸
error term

,

where η is some point between x and ξ.

FIGURE
An alternate form commonly used is

f(ξ + h) =
ν∑

k=0

1
k!
f (k)(ξ)hk +

1
(ν + 1)!

f (ν+1)(η)hν+1.

Remark Note that the information about f is provided locally, at ξ only.

If the information is spread out, i.e., when we are given distinct points ξ0 < ξ1 <
. . . < ξν ∈ [a, b] and associated values f(ξ0), f(ξ1), . . . , f(ξν), then there exists a unique
interpolation polynomial

p(x) =
ν∑

k=0

pk(x)f(ξk)

with

pk(x) =
ν∏

j=0
j 6=k

x− ξj
ξk − ξj

, k = 0, 1, . . . , ν,

such that p(ξk) = f(ξk), k = 0, 1, . . . , ν. The pk are called Lagrange functions, and the
polynomial is said to be in Lagrange form.

Example We now compute the Lagrange form of the polynomial interpolating the
data (with FIGURE)

ξ 0 1 3
f(ξ) 1 0 4

.

We have

p(x) =
2∑

k=0

pk(x)f(ξk) = p0(x) + 4p2(x),

2

where

pk(x) =
2∏

j=0
j 6=k

x− ξj
ξk − ξj

.

Thus,

p0(x) =
(x− ξ1)(x− ξ2)
(ξ0 − ξ1)(ξ0 − ξ2)

=
(x− 1)(x− 3)

(−1)(−3)
=

1
3
(x− 1)(x− 3),

and
p2(x) =

(x− ξ0)(x− ξ1)
(ξ2 − ξ0)(ξ2 − ξ1)

=
x(x− 1)

(3− 0)(3− 1)
=

1
6
x(x− 1).

This gives us

p(x) =
1
3
(x− 1)(x− 3) +

2
3
x(x− 1) = (x− 1)2.

Theorem 1.6 (Polynomial interpolation error) For every x ∈ [a, b] there exists an
η = η(x) ∈ [a, b] such that

p(x)− f(x) =
1

(ν + 1)!
f (ν+1)(η)

ν∏
k=0

(x− ξk), (1)

where p is the degree ν interpolating polynomial to f , i.e., p(ξk) = f(ξk), k = 0, 1, . . . , ν.

Remark See Assignment 1 for an illustration of Taylor vs. interpolation polynomials.

In order to prove this result we need to recall Rolle’s Theorem:

Theorem 1.7 If f ∈ C[a, b] and f ′ exists on (a, b), and if f(a) = f(b) = 0, then there
exists a number η ∈ (a, b) such that f ′(η) = 0.

Proof (of Theorem 1.6) If x coincides with one of the data sites ξk, k = 0, 1, . . . , ν,
then it is easy to see that both sides of equation (1) are zero.

Thus we now assume x 6= ξk to be fixed. We start be defining

w(t) =
ν∏

k=0

(t− ξk)

and
F = f − p− αw

with α such that F (x) = 0, i.e.,

α =
f(x)− p(x)

w(x)
.

We need to show that α = 1
(ν+1)!f

(ν+1)(η) for some η ∈ (a, b).
Since f ∈ Cν+1[a, b] we know that F ∈ Cν+1[a, b] also. Moreover,

F (t) = 0 for t = x, ξ0, ξ1, . . . , ξν .

3

The first of these equations holds by the definition of α, the remainder by the definition
of w and the fact that p interpolates f at these points.

Now we apply Rolle’s Theorem to F on each of the ν+ 1 subintervals generated by
the ν + 2 points x, ξ0, ξ1, . . . , ξν . Thus, F ′ has (at least) ν + 1 distinct zeros in (a, b).

Next, by Rolle’s Theorem (applied to F ′ on ν subintervals) we know that F ′′ has
(at least) ν zeros in (a, b).

Continuing this argument we deduce that F (ν+1) has (at least) one zero, η, in (a, b).
On the other hand, since

F (t) = f(t)− p(t)− αw(t)

we have
F (ν+1)(t) = f (ν+1)(t)− p(ν+1)(t)− αw(ν+1)(t).

However, p is a polynomial of degree at most ν, so p(ν+1) ≡ 0. Since the leading
coefficient of the ν + 1st degree polynomial w is 1 we have

w(ν+1)(t) =
dν+1

dtν+1

ν∏
k=0

(t− ξk) = (ν + 1)!.

Therefore,
F (ν+1)(t) = f (ν+1)(t)− α(ν + 1)!.

Combining this with the information about the zero of F (ν+1) we get

0 = F (ν+1)(η) = f (ν+1)(η)− α(ν + 1)!

= f (ν+1)(η)− f(x)− p(x)
w(x)

(ν + 1)!

or
f(x)− p(x) = f (ν+1)(η)

w(x)
(ν + 1)!

.

1.0.3 Peano Kernels

A useful (and rather beautiful) tool for error estimates (especially for numerical differ-
entiation and integration problems) is the use of Peano kernels and the Peano kernel
theorem.

A linear functional L on a linear space, e.g., Cν [a, b], is a mapping that maps a
function from this space onto a scalar.

Example 1. Point evaluation functional:

Lf = f(x).

2. (Definite) Integration functional:

Lf =
∫ b

a
f(x)dx.

4

Note that linear combinations of linear functionals form another linear functional.
A fairly general linear functional is

Lf =
n∑

i=0

∫ b

a
αi(x)f (i)(x)dx+

n∑
j=1

βijf
(i)(ξij)

 . (2)

Here ξij ∈ [a, b], and the functions αi and βij are at least piecewise continuous on [a, b].
The function f should be in Cn[a, b].

Furthermore, we say that a functional annihilates polynomials IPν if

Lp = 0, for all p ∈ IPν .

The Peano kernel of L as in (2) is the function

kν(ξ) = L
[
(x− ξ)ν

+

]
, ξ ∈ [a, b],

where ν ≥ n and

(x− ξ)m
+ =

{
(x− ξ)m, x ≥ ξ
0, x < ξ,

is the truncated power function.

Theorem 1.8 (Peano Kernel Theorem) If a functional L of the form (2) annihilates
polynomials IPν , then for all f ∈ Cν+1[a, b],

Lf =
1
ν!

∫ b

a
kν(ξ)f (ν+1)(ξ)dξ

where ν ≥ n and kν is the Peano kernel of L.

Remark The Peano kernel theorem allows estimates of the form

|Lf | ≤ 1
ν!
‖kν‖1‖f (ν+1)‖∞,

|Lf | ≤ 1
ν!
‖kν‖∞‖f (ν+1)‖1,

|Lf | ≤ 1
ν!
‖kν‖2‖f (ν+1)‖2,

where we used the norms

‖f‖1 =
∫ b

a
|f(x)|dx,

‖f‖2 =
(∫ b

a
|f(x)|2dx

)1/2

,

‖f‖∞ = max
x∈[a,b]

|f(x)|.

5

Example Consider the integral ∫ 1

0
f(ξ)dξ

and find an approximate integration formula of the form∫ 1

0
f(ξ)dξ ≈ b1f(0) + b2f(

1
2
) + b3f(1)

that is exact if f is a polynomial in IP3, and find its error.
To answer this question we consider the linear functional

Lf =
∫ 1

0
f(ξ)dξ − b1f(0) + b2f(

1
2
) + b3f(1),

and first find b1, b2, and b3 so that L annihilates IP3.
If we let f(x) = 1, then we get the condition

0 = Lf =
∫ 1

0
1dξ − (b1 + b2 + b3) = 1− b1 − b2 − b3.

For f(x) = x we get

0 = Lf =
∫ 1

0
ξdξ − (

1
2
b2 + b3) =

1
2
− 1

2
b2 − b3,

for f(x) = x2 we get

0 = Lf =
∫ 1

0
ξ2dξ − (

1
4
b2 + b3) =

1
3
− 1

4
b2 − b3,

and for f(x) = x3 we get

0 = Lf =
∫ 1

0
ξ3dξ − (

1
8
b2 + b3) =

1
4
− 1

8
b2 − b3.

The unique solution of this system of 4 linear equations in 3 unknowns is

b1 =
1
6
, b2 =

2
3
, b3 =

1
6
,

and therefore ∫ 1

0
f(ξ)dξ ≈ 1

6

[
f(0) + 4f(

1
2
) + f(1)

]
.

To estimate the error in this approximation we use the Peano kernel of L. It is given
by

k3(ξ) = L
[
(x− ξ)3+

]
=

∫ 1

0
(x− ξ)3+dx−

1
6

[
(0− ξ)3+ + 4(

1
2
− ξ)3+ + (1− ξ)3+

]
=

∫ 1

ξ
(x− ξ)3dx− 1

6

[
4(

1
2
− ξ)3+ + (1− ξ)3+

]
=

(1− ξ)4

4
− 1

6

{[
4(1

2 − ξ)
3 + (1− ξ)3

]
, 0 ≤ ξ ≤ 1

2

(1− ξ)3, 1
2 ≤ ξ ≤ 1.

=

{
− 1

12ξ
3(2− 3ξ), 0 ≤ ξ ≤ 1

2

− 1
12(1− ξ)3(3ξ − 1), 1

2 ≤ ξ ≤ 1.

6

Now the Peano kernel theorem says that∫ 1

0
f(ξ)dξ − 1

6

[
f(0) + 4f(

1
2
) + f(1)

]
= Lf =

1
3!

∫ 1

0
k3(ξ)f (4)(ξ)dξ,

and we can explicitly calculate estimates of the form

|Lf | ≤ 1
1152

‖f (4)‖1, |Lf | ≤
√

14
8064

‖f (4)‖2, |Lf | ≤
1

2880
‖f (4)‖∞ f ∈ C4[0, 1]

since

‖k3‖1 =
1

480
, ‖k3‖2 =

√
14

1344
, ‖k3‖∞ =

1
192

.

1.1 ODEs and the Lipschitz Condition

We consider the system of first-order ODE IVP

y′(t) =
dy(t)
dt

= f(t,y(t)), t ≥ t0, (3)

y(t0) = y0. (4)

Here

y =

 y1
...
yd

 , y0 =

 y0,1
...
y0,d

 , f =

 f1
...
fd

 , ∈ IRd .

Remark This approach covers not only first-order ODEs, but also higher-order ODEs,
since any d-th order ODE IVP can be converted to a system of d first-order IVPs (see
Assignment 1).

If f(t,y) = A(t)y + b(t) for some d× d matrix-valued function A and d× 1 vector-
valued function b, then the ODE is linear, and if b(t) = 0 it is linear and homogeneous.
Otherwise it is nonlinear. If f is independent of t, the ODE is called autonomous,
and if f is independent of y, then the ODE system reduces to a (vector of) indefinite
integral(s).

Theorem 1.9 (Picard-Lindelöf: Existence and Uniqueness) Let B be the ball B = {x ∈
IRd : ‖x− y0‖ ≤ b} and let S be the cylinder

S = {(t,x) : t ∈ [t0, t0 + a], x ∈ B}

where a, b > 0. If f is continuous on S and f also satisfies the Lipschitz condition

‖f(t,x)− f(t,y)‖ ≤ λ‖x− y‖, x,y ∈ B,

then the IVP (24), (4) has a unique solution on [t0, t0 + α], where α is some constant
that depends on a, b and f . In fact,

α = min

{
a,

b

sup(t,x)∈S ‖f(t,x)‖

}
.

7

Note that in the system setting we need to measure differences of vectors in some
appropriate norm instead of simple absolute value.

Remark The proof of this theorem is rather involved.

Example For a single equation, continuity of the partial derivative ∂f(t,y)
∂y on S guar-

antees Lipschitz continuity of f with

λ = max
t∈[t0,t0+a]

y∈B

∣∣∣∣∂f(t, y)
∂y

∣∣∣∣ .
For the initial value problem

y′(t) = 2t (y(t))2 , y(0) = 1,

we have
f(t, y) = 2ty2,

∂f(t, y)
∂y

= 4ty,

which are both continuous on all of IR2. The theorem above guarantees existence and
uniqueness of a solution for t near t0 = 0. In fact, it is given by

y(t) =
1

1− t2
, −1 < t < 1.

However, we see that just because f and ∂f(t,y)
∂y are continuous on all of IR2 we cannot

expect existence or uniqueness of a solution y for all t.

Remark In the system setting a sufficient condition for Lipschitz continuity of f is
given by continuity of the Jacobian matrix

∂f(t,y)
∂y

=
[
∂fi(t, y1, . . . , yd)

∂yj

]d

i,j=1

.

Remark Recall that a linear system

y′ = Ay, t ≥ t0, y(t0) = y0

with d× d matrix A always has a unique solution. It is given by

y(t) =
d∑

`=1

eλ`(t−t0)α`, t ≥ t0,

where λ1, . . . , λd are the eigenvalues of A, and the α1, . . . ,αd ∈ IRd are vectors (eigen-
vectors if the eigenvalues are distinct).

8

1.2 Euler’s Method

1.2.1 The basic Algorithm

Recall that we are interested in general first-order IVPs (24), (4) of the form

y′(t) = f(t,y(t)), t ≥ t0
y(t0) = y0.

It is our goal to derive numerical methods for the solution of this kind of problem. The
first, and probably best known, method is called Euler’s method. Even though this is
one of the “original” numerical methods for the solution of IVPs, it remains important
for both practical and theoretical purposes.

The method is derived by considering the approximation

y′(t) ≈ y(t+ h)− y(t)
h

of the first derivative. This implies

y(t+ h) ≈ y(t) + hy′(t),

which – using the differential equation (24) – becomes

y(t+ h) ≈ y(t) + hf(t,y(t)). (5)

Introducing a sequence of points t0, t1 = t0 +h, t2 = t0 + 2h, . . . , tN = t0 +Nh, this
immediately leads to an iterative algorithm.

Algorithm

Input t0, y0, f , h, N

t = t0, y = y0

for n = 1 to N do

y ← y + hf(t,y)
t← t+ h

end

Remark 1. Alternately, we can derive the formula for Euler’s method via inte-
gration. Since the IVP gives us both an initial condition as well as the slope
y′ = f(t,y) of the solution, we can assume that the slope is constant on a small
interval [t0, t0 + h], i.e., f(t,y(t)) ≈ f(t0,y(t0)) for t ∈ [t0, t0 + h]. Then we can
integrate to get

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0))dτ

= y(t0) + (t− t0)f(t0,y(t0))

– Euler’s method.

9

2. Note that Euler’s method yields a set of discrete points (tn,yn), n = 1, . . . , N ,
which approximate the graph of the solution y = y(t). In order to obtain a
continuous solution one must use an interpolation or approximation method.

3. Euler’s method is illustrated in the Maple worksheet 472 Euler Taylor.mws.

4. In principle, it is easy to use Euler’s method with a variable step size, i.e.,

y(tn+1) ≈ yn+1 = yn + hnf(tn,yn),

but analysis of the method is simpler with a constant step size hn = h.

1.2.2 Taylor Series Methods

An immediate generalization of Euler’s method are the so-called general Taylor series
methods. We use a Taylor expansion

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +

h3

6
y′′′(t) + . . . ,

and therefore obtain the numerical approximation

y(t+ h) ≈
ν∑

k=0

hky(k)(t)
k!

(6)

which is referred to as a ν-th order Taylor series method.

Remark 1. Obviously, Euler’s method is a first-order Taylor method.

2. In order to program a Taylor method we need to pre-compute all higher-order
derivatives of y required by the method since the differential equation only pro-
vides a representation for y′. This implies that we will end up with code that
depends on (and changes with) the IVP to be solved.

3. Computer software with symbolic manipulation capabilities (such as Maple or
Mathematica) allows us to write code for Taylor methods for arbitrary IVPs.

We illustrate the traditional treatment of a second-order Taylor method in the
following example.

Example We consider the initial value problem (d = 1)

y′(t) = y(t)− t2 + 1

y(0) =
1
2
.

The second-order Taylor approximation is given by

y(t+ h) ≈ y(t) + hy′(t) +
h2

2
y′′(t).

Therefore, we need to express y′(t) and y′′(t) in terms of y and t so that an iterative
algorithm can be formulated.

10

From the differential equation

y′(t) = f(t, y(t)) = y(t)− t2 + 1.

Therefore, differentiating this relation,

y′′(t) = y′(t)− 2t,

and this can be incorporated into the following algorithm.

Algorithm

Input t0, y0, f , h, N

t = t0, y = y0

for n = 1 to N do

y′ = f(t, y)

y′′ = y′ − 2t

y ← x+ hy′ + h2

2 y
′′

t← t+ h

end

Remark 1. Two modifications are suggested to make the algorithm more efficient
and numerically stable.

(a) Replace the computation of x by the nested formulation

y = y + h

(
y′ +

h

2
y′′
)
.

(b) Advance the time t via t = t0 + nh.

2. An example of a fourth-order Taylor method is given in the Maple worksheet
472 Euler Taylor.mws.

1.2.3 Errors and Convergence

When considering errors introduced using the Taylor series approximation we need to
distinguish between two different types of error:

• local truncation error, and

• global truncation error.

The local truncation error is the error introduced directly by truncation of the
Taylor series, i.e., at each time step we have an error

Eν =
hν+1

(ν + 1)!
y(ν+1)(t+ θh), 0 < θ < 1.

11

Thus, the ν-th order Taylor method has an O(hν+1) local truncation error.
The global truncation error is the error that results if we use a ν-th order Taylor

method having O(hν+1) local truncation error to solve our IVP up to time t = t0 + t∗.
Since we will be performing

N =
⌊
t∗

h

⌋
steps we see that one order of h is lost in the global truncation error, i.e., the global
truncation error is of the order O(hν).

Remark • Of course, truncation errors are independent of roundoff errors which
can add to the overall error.

• As we will see later, a method with O(hν+1) local accuracy need not be globally
ν-th order. In fact, it need not converge at all. Stability will be the key to
convergence.

A numerical method for the IVP (24), (4) is called convergent if for every Lipschitz
function f and every t∗ > 0 we have

lim
h→0+

max
n=0,1,...,N

‖yn,h − y(tn)‖ = 0.

In other words, if the numerical solution approaches the analytic solution for increas-
ingly smaller step sizes h.

For Euler’s method we can establish convergence (and therefore the above heuristics
are justified).

Theorem 1.10 Euler’s method is convergent.

Proof To simplify the proof we assume that f (and therefore also y) is analytic. We
introduce the notation

en,h = yn,h − y(tn),

the error at step n. We need to show

lim
h→0+

max
n=0,1,...,N

‖en,h‖ = 0.

Taylor’s theorem for the analytic solution y gives us

y(tn+1) = y(tn) + hy′(tn) +O(h2).

Replacing y′ by the ODE (24) we have

y(tn+1) = y(tn) + hf(tn,y(tn)) +O(h2).

From Euler’s method we have for the numerical solution

yn+1,h = yn,h + hf(tn,yn,h).

12

The difference of these last two expressions yields

en+1,h = yn+1,h − y(tn+1)
= [yn,h + hf(tn,yn,h)]−

[
y(tn) + hf(tn,y(tn)) +O(h2)

]
= en,h + h [f(tn,yn,h)− f(tn,y(tn))] +O(h2).

Since yn,h = y(tn) + en,h we have

en+1,h = en,h + h [f(tn,y(tn) + en,h)− f(tn,y(tn))] +O(h2).

Next we can apply norms and use the triangle inequality to obtain

‖en+1,h‖ ≤ ‖en,h‖+ h‖f(tn,y(tn) + en,h)− f(tn,y(tn))‖+ ch2.

Here we also used the definition of O-notation, i.e., g(h) = O(hp) if |g(h)| ≤ chp for
some constant c independent of h.

Now, note that f is Lipschitz, i.e., ‖f(t,x) − f(t,y)‖ ≤ λ‖x − y‖. Taking x =
y(tn) + en,h and y = y(tn) we obtain

‖en+1,h‖ ≤ ‖en,h‖+ hλ‖y(tn) + en,h − y(tn))‖+ ch2

= (1 + hλ)‖en,h‖+ ch2.

We can use induction to show that

‖en,h‖ ≤
c

λ
h [(1 + hλ)n − 1] , n = 0, 1, (7)

Finally, one can show that
(1 + hλ)n < enhλ ≤ et∗λ (8)

so that
‖en,h‖ ≤

c

λ
h
[
et

∗λ − 1
]
, n = 0, 1, . . . , N,

and
lim

h→0+
max

n=0,1,...,N
‖en,h‖ = lim

h→0+

c

λ

[
et

∗λ − 1
]

︸ ︷︷ ︸
const

h = 0.

Remark The error estimate from the proof seems precise. In particular, since one
can easily see (using the Peano kernel theorem) that c = maxt∈[t0,t0+t∗] ‖y′′‖ works.
However, it grossly over-estimates the error in many cases. Thus, it is useless for
practical purposes.

Remark The order O(h) convergence of Euler’s method is demonstrated in the Matlab
script EulerDemo.m.

Example Consider the simple linear decay problem y′(t) = −100y(t), y(0) = 1 with
exact solution y(t) = e−100t.

Since f(t, y) = −100y, it is clear that f is Lipschitz continuous with λ = 100 (since
∂f
∂y = −100).

13

On the other hand, y′′(t) = −100y′(t) = 1002y(t), so that c = max ‖y′′‖ = 1002 =
λ2.

The error estimate from the proof is of the form

|en,h| ≤
c

λ
h
[
et

∗λ − 1
]

= 100h
[
e100t∗ − 1

]
.

If we limit ourselves to the interval [0, 1] then t∗ = 1 and

|en,h| ≤ 100h
[
e100 − 1

]
≈ 2.6881× 1045h.

On the other hand, Euler’s method yields

y1 = y0 − h100y0 = (1− 100h)y0

y2 = y1 − h100y1 = (1− 100h)y1 = (1− 100h)2y0

...
yn = (1− 100h)ny0 = (1− 100h)n,

so that the true error is

|yn − y(tn︸︷︷︸
nh

)| =
∣∣∣(1− 100h)n − e−100nh

∣∣∣� 2.6881× 1045h.

1.3 Trapezoidal Rule

Recall the derivation of Euler’s method via integration:

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0))dτ

= y(t0) + (t− t0)f(t0,y(t0)).

FIGURE
Note that this corresponds to the “left endpoint rule” for integration. A simple –

but significant – improvement over the left endpoint rule is the trapezoidal rule (for
numerical integration), where we use the average of the slopes at the endpoints of the
interval.

FIGURE
This leads to an improved method to solve the IVP (24), (4)

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0)) + f(t,y(t))
2

dτ

= y(t0) +
1
2
(t− t0) [f(t0,y(t0)) + f(t,y(t))] .

This calculation motivates the trapezoidal rule (for IVPs):

yn+1 = yn +
1
2
h [f(tn,yn) + f(tn+1,yn+1)] . (9)

14

Remark The major difference between the trapezoidal rule and the Taylor/Euler
methods studied earlier lies in the appearance of the “new” value of the approximate
solution, yn+1, on both sides of the formula (9). This means that yn+1 is given only
implicitly by equation (9), and therefore the trapezoidal rule is referred to as an im-
plicit method. We will discuss one possible implementation of the trapezoidal rule
later. Methods for which yn+1 appears only on the left-hand side of the formula are
known as explicit methods.

The local truncation error for the trapezoidal rule can be derived by substituting
the exact solution into the approximation formula (9). This leads to

y(tn+1) ≈ y(tn) +
1
2
h [f(tn,y(tn)) + f(tn+1,y(tn+1))] . (10)

To determine the approximation error in this formula we first rearrange (10) and use
the ODE (24) to replace the terms involving f by first derivatives y′, i.e.,

y(tn+1)− y(tn)− 1
2h [f(tn,y(tn)) + f(tn+1,y(tn+1))]

= y(tn+1)− y(tn)− 1
2h [y′(tn) + y′(tn+1)] .

Next, we replace the terms involving tn+1 by Taylor expansions about tn. This leads
to

y(tn+1)− y(tn)− 1
2h {y

′(tn) + y′(tn+1)}

=
[
y(tn) + hy′(tn) + h2

2 y′′(tn) +O(h3)
]
− y(tn)− 1

2h
{
y′(tn) +

[
y′(tn) + hy′′(tn) +O(h2)

]}
= O(h3),

so that the local truncation error of the trapezoidal rule is of order O(h3). To see
that the trapezoidal rule is globally a second-order method we need to establish its
convergence.

Theorem 1.11 The trapezoidal rule (9) is convergent.

Proof Similar to the proof of convergence for Euler’s method. See textbook.

As mentioned earlier, the trapezoidal rule is an implicit method, and therefore,
additional computational effort is required to determine the approximate solution yn+1

at time tn+1. There are various approaches to doing this.

1. One possibility is to use a predictor-corrector approach. Here an explicit method
(such as Euler’s method) is used to predict a preliminary value ỹn+1 for yn+1,
and the trapezoidal rule is then used in the (explicit) form

yn+1 = yn +
1
2
h
[
f(tn,yn) + f(tn+1, ỹn+1)

]
.

We will study this general approach more carefully in the context of multistep
methods later.

15

2. Another approach is to use fixed-point iteration to compute yn+1. Since the
trapezoidal rule is given by

yn+1 = yn +
1
2
h [f(tn,yn) + f(tn+1,yn+1)] ,

and f can be a rather general (in particular nonlinear) function, the problem of
finding yn+1 can be rephrased as a problem of finding a root of the (system of)
nonlinear equation(s)

G(z) = g(z)− z = 0.

In our case
g(z) = yn +

h

2
f(tn,yn) +

h

2
f(tn+1,z).

Many techniques exist for solving such nonlinear equations such as Newton or
Newton-Raphson iteration. The simplest approach is to use functional iteration

z[k+1] = g(z[k]), k = 0, 1, 2, . . .

with a good initial value z[0]. The famous Banach fixed-point theorem guarantees
convergence of this approach provided the norm of the Jacobian of g is small
enough, i.e.,

‖∂g

∂z
‖ < 1.

As a slightly weaker requirement, Lipschitz continuity of g is sufficient. Since
here

∂g

∂z
=
h

2
∂f

∂z

we see that – depending on the function f – the stepsize h has to be chosen small
enough.

Remark The specific predictor-corrector scheme suggested in 1. above is in fact a
popular numerical IVP solver in its own right. It is known under many different names
such as the classical second-order Runge-Kutta method, the improved Euler method, or
Heun’s method.

Remark An implementation of the fixed-point iteration approach for the trapezoidal
rule is given in the Matlab function Trapezoid.m. As initial guess z[0] = y

[0]
n+1 we use

the most recent approximate solution from the previous time step yn. Pseudocode for
the algorithm is

16

Algorithm

Input t0, y0, f , h, N

t = t0, y = y0, w = y

for n = 1 to N do

f1 = f(t, w)

t = t+ h

for k = 1, 2, . . . do

f2 = f(t, w)
w = y + h

2 (f1 + f2)

end

y = w

end

Remark The order O(h2) convergence of the trapezoidal rule is demonstrated in the
Matlab script TrapezoidDemo.m.

Example The problem

y′(t) = ln(3)
(
y(t)− by(t)c − 3

2

)
, y(0) = 0,

can be shown to have solution

y(t) = −n+
1
2
(
1− 3t−n

)
, n ≤ t ≤ n+ 1, n = 0, 1,

However, since the function f here is not Lipschitz continuous we cannot expect our
numerical solvers to perform as usual. The Matlab scripts EulerFailDemo.m and
TrapezoidFailDemo.m show that we get about O(h0.8) convergence for both methods.

1.4 Theta Methods

Both Euler’s method and the trapezoidal rule are included as special cases of the
following formula:

yn+1 = yn + h [θf(tnyn) + (1− θ)f(tn+1,yn+1)] , n = 0, 1, (11)

Euler’s method corresponds to the choice θ = 1, and the trapezoidal rule to θ = 1/2.
In general, formula (11) for θ ∈ [0, 1] is known as theta method.

Remark The only explicit theta method is Euler’s method (θ = 1), all others are
implicit. Moreover, the only second-order method is the trapezoid rule. All others are
first-order.

17

To verify the order claim we determine the local truncation error for the general
theta method. As before, we insert the exact solution y into the approximate formula
(11). This yields

y(tn+1) ≈ y(tn) + h [θf(tn,y(tn)) + (1− θ)f(tn+1,y(tn+1))] . (12)

To determine the approximation error in this formula we proceed analogously to what
we did for the trapezoidal rule. First we rearrange (12) and use the ODE (24) to replace
the terms involving f by first derivatives y′, i.e.,

y(tn+1)− y(tn)− h [θf(tn,y(tn)) + (1− θ)f(tn+1,y(tn+1))]
= y(tn+1)− y(tn)− h [θy′(tn) + (1− θ)y′(tn+1)] .

Next, we replace the terms involving tn+1 by Taylor expansions about tn. This leads
to

y(tn+1)− y(tn)− h {θy′(tn) + (1− θ)y′(tn+1)}

=
[
y(tn) + hy′(tn) + h2

2 y′′(tn) + h3

6 y′′′(tn) +O(h4)
]
− y(tn)

−h
{
θy′(tn) + (1− θ)

[
y′(tn) + hy′′(tn) + h2

2 y′′′(tn) +O(h3)
]}

=
(
θ − 1

2

)
h2y′′(tn) +

(
1
2θ −

1
3

)
h3y′′′(tn) +O(h4),

so that the local truncation error of the general theta method is of order O(h2). How-
ever, for θ = 1/2 the first term on the right drops out, and we have a local truncation
error of order O(h3).

Convergence of the general theta method is established in Exercise 1.1 (see Assign-
ment 2).

Remark The choice θ = 0 yields the so-called backward Euler method which has
particularly nice stability properties, and is often used to solve stiff equations. Other
choices of θ are used less frequently.

18

2 Multistep Methods

Up to now, all methods we studied were single step methods, i.e., the value yn+1 was
found using information only from the previous time level tn. Now we will consider
so-called multistep methods, i.e., more of the history of the solution will affect the value
yn+1.

2.1 Adams Methods

Consider the first-order ODE
y′(t) = f(t,y(t)).

If we integrate from tn+1 to tn+2 we have∫ tn+2

tn+1

y′(τ)dτ =
∫ tn+2

tn+1

f(τ,y(τ))dτ

or

y(tn+2)− y(tn+1) =
∫ tn+2

tn+1

f(τ,y(τ))dτ. (13)

As we saw earlier for Euler’s method and for the trapezoidal rule, different numer-
ical integration rules lead to different ODE solvers. In particular, the left-endpoint
rule yields Euler’s method, while the trapezoidal rule for integration gives rise to the
trapezoidal rule for IVPs. Incidentally, the right-endpoint rule provides us with the
backward Euler method.

We now use a different quadrature formula for the integral in (13).

Example Instead of viewing the slope f as a constant on the interval [tn, tn+1] we now
represent f by its linear interpolating polynomial at the points τ = tn and τ = tn+1

given in Lagrange form, i.e.,

p(τ) =
τ − tn+1

tn − tn+1
f(tn,y(tn)) +

τ − tn
tn+1 − tn

f(tn+1,y(tn+1))

=
tn+1 − τ

h
f(tn,y(tn)) +

τ − tn
h

f(tn+1,y(tn+1)),

where we have used the stepsize tn+1 − tn = h.
FIGURE
Therefore, the integral becomes∫ tn+2

tn+1

f(τ,y(τ))dτ ≈
∫ tn+2

tn+1

p(τ)dτ

=
∫ tn+2

tn+1

[
tn+1 − τ

h
f(tn,y(tn)) +

τ − tn
h

f(tn+1,y(tn+1))
]
dτ

=
[
f(tn,y(tn))

(
−1

2

)
(tn+1 − τ)2

h
+ f(tn+1,y(tn+1))

(τ − tn)2

2h

]tn+2

tn+1

=
3h
2

f(tn+1,y(tn+1))−
h

2
f(tn,y(tn)).

19

Thus (13) motivates the numerical method

yn+2 = yn+1 +
h

2
[3f(tn+1,yn+1)− f(tn,yn)] . (14)

Since formula (14) involves two previously computed solution values, this method is
known as a two-step method. More precisely, is is known as the second-order Adams-
Bashforth method (or AB method) dating back to 1883.

Remark 1. We will establish later that this method is indeed of second order ac-
curacy.

2. Note that the method (14) requires two initial conditions. Since the IVP will give
us only one initial condition, in the Matlab demo script ABDemo.m we take the
second starting value from the exact solution. This is, of course, not realistic, and
in practice one often precedes the Adams-Bashforth method by one step of, e.g.,
a second-order Runge-Kutta method (see later). However, even a single Euler
step (which is also of order O(h2)) can also be used to start up (and maintain
the accuracy of) the second-order AB method. This approach can also be used
in ABDemo.m by uncommenting the corresponding line.

Example The Matlab script ABDemo.m compares the convergence of Euler’s method
(the one-step AB method) with the two-step AB method (14) for the IVP

y′(t) = −y2(t), y(0) = 1

on the interval [0, 10] with different stepsizes N = 50, 100, 200 and 400. The exact
solution of this problem is

y(t) =
1

t+ 1
.

Example If we use a linear Lagrange interpolant to the integrand f of (13) at the
points τ = tn+1 and τ = tn+2 then we obtain

y(tn+2) ≈ y(tn+1) +
h

2
[f(tn+1,y(tn+1)) + f(tn+2,y(tn+2))]

or the numerical scheme

yn+2 = yn+1 +
h

2
[f(tn+1,yn+1) + f(tn+2,yn+2)] . (15)

FIGURE
This method is known as second-order Adams-Moulton method (or AM method).

It is a one-step method, and identical to the trapezoidal rule studied earlier (modulo a
shift of the indices by one).

Remark In general, a pth-order Adams method is obtained by replacing the integrand
f in (13) by a polynomial of degree p − 1. However, the Adams-Bashforth method is
an explicit method that uses the most recent information as well as p− 1 “historical”
points to fit the polynomial to. The pth-order Adams-Moulton method is an implicit
method that fits the polynomial to the point to be determined next, the current point,
and p− 2 “historical” points. Therefore, the pth-order AB method is a p-step method,
while the pth-order AM method is a p− 1-step method.

20

For a general s-step Adams method we start the derivation as usual with the first-
order ODE (24) and integrate from the current time tn+s−1 to the new time tn+s. This
gives us

y(tn+s)− y(tn+s−1) =
∫ tn+s

tn+s−1

f(τ,y(τ))dτ. (16)

As mentioned above, for the s-step AB method we now fit the slope f with a polynomial
of degree s− 1 at the s “known” points tn, tn+1, . . . , tn+s−2, tn+s−1, i.e., we replace the
integrand in (16) by the polynomial

p(τ) =
s−1∑
m=0

pm(τ)f(tn+m,ym+n),

where the pm are the Lagrange functions (cf. Section 1.0.2)

pm(τ) =
s−1∏
`=0
` 6=m

τ − tn+`

tn+m − tn+`
, m = 0, 1, . . . , s− 1.

This gives us

y(tn+s)− y(tn+s−1) ≈
∫ tn+s

tn+s−1

p(τ)dτ

=
∫ tn+s

tn+s−1

s−1∑
m=0

pm(τ)f(tn+m,ym+n)dτ

=
s−1∑
m=0

f(tn+m,ym+n)
∫ tn+s

tn+s−1

pm(τ)dτ.

The calculations just performed motivate the numerical method

yn+s = yn+s−1 + h
s−1∑
m=0

bmf(tn+m,ym+n), (17)

where the coefficients bm, m = 0, 1, . . . , s − 1, are given by (using the substitution
u = τ − tn+s−1, and the fact that tn+s − tn+s−1 = h)

bm =
1
h

∫ tn+s

tn+s−1

pm(τ)dτ

=
1
h

∫ h

0
pm(tn+s−1 + u)du. (18)

Formula (17) together with the coefficients (18) is known as the general s-step Adams-
Bashforth method.

Example The coefficients bm are independent of the specific stepsize h and timestep
n, so they can be computed once and for all. For the case s = 2 discussed earlier we
compute

p0(τ) =
τ − tn+1

tn − tn+1
,

21

Order Formula LTE

1 yn+1 = yn + hfn
h2

2
y′′(η)

2 yn+2 = yn+1 + h
2

[3fn+1 − fn] 5h3

12
y′′′(η)

3 yn+3 = yn+2 + h
12

[23fn+2 − 16fn+1 + 5fn] 3h4

8
y(4)(η)

4 yn+4 = yn+3 + h
24

[55fn+3 − 59fn+2 + 37fn+1 − 9fn] 251h5

720
y(5)(η)

5 yn+5 = yn+4 + h
720

[1901fn+4 − 2774fn+3 + 2616fn+2 − 1274fn+1 + 251fn] 95h6

2888
y(6)(η)

Table 1: Adams-Bashforth formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 5, LTE stands for local truncation error.

and

b0 =
1
h

∫ h

0

tn+1 + u− tn+1

tn − tn+1
du

=
1
h

∫ h

0

u

−h
du

= − 1
h2

[
u2

2

]h

0

= −1
2
.

Formulas for other choices of s are listed in Table 1.

Remark 1. The technique of using an interpolating polynomial p of degree s − 1
at s equally spaced nodes with spacing h to replace the integrand f leads to
so-called Newton-Cotes formulas for numerical integration. It is known that the
interpolation error in this case is of the order O(hs), and integration of this
polynomial over an interval of length h adds another factor of h to the order.
Therefore, the s-step Adams-Bashforth method has a local truncation error of
order O(hs+1), which – provided the method converges – translates into a global
method of order s.

2. General Adams-Moulton formulas can be derived similarly and are listed in Ta-
ble 2. Note that the backward Euler method does not quite fit the general de-
scription of an AM method, since it is a single step method of order 1 (while the
other AM methods are s-step methods of order s + 1). In fact, there are two
single step AM methods: the backward Euler method and the trapezoidal rule.

2.2 The Predictor-Corrector Idea

As mentioned earlier, one way to implement an implicit scheme is to couple it with a
corresponding explicit scheme of the same order. We will now explain this predictor-
corrector approach using the 2nd-order AB and AM methods.

22

Order Formula LTE

1 yn+1 = yn + hfn+1 −h2

2
y′′(η)

2 yn+2 = yn+1 + h
2

[fn+2 + fn+1] −h3

12
y′′′(η)

3 yn+3 = yn+2 + h
12

[5fn+3 + 8fn+2 − fn+1] −h4

24
y(4)(η)

4 yn+4 = yn+3 + h
24

[9fn+4 + 19fn+3 − 5fn+2 + fn+1] − 19h5

720
y(5)(η)

5 yn+5 = yn+4 + h
720

[251fn+5 + 646fn+4 − 264fn+3 + 106fn+2 − 19fn+1] − 3h6

160
y(6)(η)

Table 2: Adams-Moulton formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 5, LTE stands for local truncation error.

We start with the predictor – in our case the second-order AB method. However,
we treat its output only as a temporary answer, i.e.,

ỹn+2 = yn+1 +
h

2
[3f(tn+1,yn+1)− f(tn,yn)] .

Next we correct this value by using it on the right-hand side of the second-order AM
method, i.e.,

yn+2 = yn+1 +
h

2
[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
.

While this approach provides a simple realization of an implicit method, it can also
be used to create a scheme that uses a variable stepsize h. The basic idea is to use the
difference |ỹn+2−yn+2| to judge the accuracy of the method. The following algorithm
describes the general idea:

Algorithm

ỹn+2 = yn+1 + h
2 [3f(tn+1,yn+1)− f(tn,yn)]

yn+2 = yn+1 + h
2

[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
κ = 1

6 |ỹn+2 − yn+2|

if κ is relatively large, then

h← h/2 (i.e., reduce the stepsize)

repeat

else if κ is relatively small, then

h← 2h (i.e., increase the stepsize)

else

continue (i.e., keep h)

end

23

The specific choice of e in the algorithm is motivated by the following argument.
The local truncation errors for the second-order AB and AM methods, respectively, are

y(tn+2)− ỹn+2 =
5
12
h3y′′′(ηAB)

y(tn+2)− yn+2 = − 1
12
h3y′′′(ηAM).

If we assume that y′′′ is nearly constant over the interval of interest, i.e., y′′′(ηAB) ≈
y′′′(ηAM) ≈ y′′′(η), then we can subtract the above two equations from each other to
get

yn+2 − ỹn+2 ≈
1
2
h3y′′′(η),

and therefore the error at this time step is

|y(tn+2)− yn+2| ≈
1
12
h3y′′′(η) ≈ 1

6
|yn+2 − ỹn+2|.

Remark 1. Finding a good way to characterize “relatively large” and “relatively
small” in the algorithm can be tricky.

2. Note that it may be necessary to generate additional function values by interpo-
lation if the stepsize is reduced and the predictor has to be evaluated for this new
stepsize.

3. A variable stepsize, variable-order AB-AM predictor-corrector scheme is imple-
mented in Matlab in the routine ode113.

2.3 Order and Convergence of Multistep Methods

There are even more general multistep methods than the Adams methods. We will
write them in the form

s∑
m=0

amyn+m = h

s∑
m=0

bmf(tn+m,yn+m), n = 0, 1, . . . , (19)

where the coefficients am and bm, m = 0, 1, . . . , s are independent of h, n, and the
underlying ODE. Usually, the formula is normalized so that as = 1. The formula is a
true s-step formula if either a0 or b0 are different from zero. Different choices of the
coefficients am and bm yield different numerical methods. In particular, if bs = 0 the
method will be explicit. Otherwise it will be implicit.

Remark The general multistep formula (19) is of the same form as so-called recursive
or infinite impulse response (IIR) digital filters used in digital signal processing.

Example The second-order AB method corresponds to s = 2 with

a2 = 1, a1 = −1, a0 = 0, b2 = 0, b1 = 3/2, b0 = −1/2,

and the second-order AM method corresponds to s = 2 with

a2 = 1, a1 = −1, a0 = 0, b2 = 1/2, b1 = 1/2, b0 = 0.

24

Remark The coefficients am and bm will play a crucial role in our following discussion
of order and convergence of multistep methods, as well as later on in our study of
stability.

As used many times before, a numerical IVP solver of the form

yn+1 = Yn(f , h,y0,y1, . . . ,yn)

is of order p if and only if

y(tn+1)− Yn(f , h,y(t0),y(t1), . . . ,y(tn)) = O(hp+1).

For the multistep methods (19) we can alternatively consider the linear functional ψt

defined by

ψty =
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmf(t+mh,y(t+mh))

=
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmy′(t+mh).

Then the s-step method (19) is of order p if and only if

ψty = O(hp+1)

for all sufficiently smooth functions y.
We now characterize the order p of a multistep method in terms of the coefficients

am and bm.

Theorem 2.1 The multistep method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m)

is of order p ≥ 1 if and only if

s∑
m=0

am = 0,

s∑
m=0

mk

k!
am =

s∑
m=0

mk−1

(k − 1)!
bm, k = 1, 2, . . . , p,

s∑
m=0

mp+1

(p+ 1)!
am 6=

s∑
m=0

mp

p!
bm.

Proof We have

ψty =
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmy′(t+mh).

25

Using Taylor expansions for both y and y′ we obtain

ψty =
s∑

m=0

am

∞∑
k=0

1
k!

y(k)(t)(mh)k − h
s∑

m=0

bm

∞∑
k=0

1
k!

y(k+1)(t)(mh)k

=
s∑

m=0

am

∞∑
k=0

1
k!

y(k)(t)mkhk − h
s∑

m=0

bm

∞∑
k=1

1
(k − 1)!

y(k)(t)mk−1hk−1

=
∞∑

k=0

(
s∑

m=0

mk

k!
am

)
y(k)(t)hk −

∞∑
k=1

(
s∑

m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

=

(
s∑

m=0

am

)
y(t) +

∞∑
k=1

(
s∑

m=0

mk

k!
am

)
y(k)(t)hk −

∞∑
k=1

(
s∑

m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

=

(
s∑

m=0

am

)
y(t) +

∞∑
k=1

(
s∑

m=0

mk

k!
am −

s∑
m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

We get ψty = O(hp+1) by satisfying the conditions as claimed.

Remark 1. We can now use the simple conditions in Theorem 2.1 to check the
order of any multistep method. This is generally much easier than the special
techniques we used earlier (see the example below).

2. A method is called consistent if it is of order p ≥ 1, i.e., if

s∑
m=0

am = 0 and
s∑

m=0

mam =
s∑

m=0

bm.

We noted earlier that merely establishing the order of a method does not ensure
its convergence (see the second example below). With this new terminology we
can say that consistency alone does not imply convergence.

3. If we introduce the polynomials (often called characteristic polynomials or gen-
erating polynomials of the method)

ρ(w) =
s∑

m=0

amw
m, σ(w) =

s∑
m=0

bmw
m,

then one can show that the general multistep method is of order p if and only if
there exists a constant c 6= 0 such that

ρ(w)− σ(w) lnw = c(w − 1)p+1 +O(|w − 1|p+2) as w → 1. (20)

Note that this condition tells us how well the log-function is approximated by
the rational function ρ

σ near w = 1. In terms of the polynomials ρ and σ the two
consistency conditions above correspond to

ρ(1) = 0 and ρ′(1) = σ(1).

26

4. The constant c in (20) (as well as the difference of the two sides of the third
condition in Theorem 2.1) is in fact the local error constant of the method (cf.
the following example and the local truncation errors listed in Tables 1 and 2).

Example We show that the Adams-Bashforth method (14) derived earlier is indeed
of second order. The iteration formula was

yn+2 − yn+1 =
h

2
[3f(tn+1,yn+1)− f(tn,yn)] ,

so that – as noted earlier – s = 2 and a2 = 1, a1 = −1, a0 = 0, b2 = 0, b1 = 3/2,
b0 = −1/2.

Now,
2∑

m=0

am = 0− 1 + 1 = 0,

and for k = 1 (note: 0! = 1! = 1)

2∑
m=0

mam =
2∑

m=0

bm

⇐⇒ 0(0) + (1)(−1) + 2(1) = −1
2

+
3
2

+ 0

⇐⇒ 1 = 1,

for k = 2

2∑
m=0

m2

2
am =

2∑
m=0

mbm

⇐⇒ 0
2
(0) +

1
2
(−1) +

4
2
(1) = (0)(−1

2
) + (1)

3
2

+ (2)0

⇐⇒ 3
2

=
3
2
,

and for k = 3

2∑
m=0

m3

3!
am =

2∑
m=0

m2

2!
bm

⇐⇒ 0
6
(0) +

1
6
(−1) +

8
6
(1) =

0
2
(−1

2
) +

1
2

3
2

+
4
2
0

⇐⇒ 7
6

=
3
4
.

Therefore, the method is indeed of order p = 2. Moreover, the difference 7
6 −

3
4 = 5

12
(the error constant listed in Table 1).

Alternatively, we can check the condition

ρ(w)− σ(w) lnw = c(w − 1)p+1 +O(|w − 1|p+2) as w → 1.

27

For our example

ρ(w) =
2∑

m=0

amw
m = w2 − w,

σ(w) =
2∑

m=0

bmw
m =

3
2
w − 1

2
.

Since the right-hand side of our condition is written in terms of w − 1 we express
everything in terms of ξ = w − 1 and then take the limit as ξ → 0. Thus

ρ(ξ) = (ξ + 1)2 − (ξ + 1) = ξ2 + ξ,

σ(ξ) =
3
2
(ξ + 1)− 1

2
=

3
2
ξ + 1,

and therefore (using the Taylor expansion of the logarithm)

ρ(ξ)− σ(ξ) ln(ξ + 1) =
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

)
ln(ξ + 1)

=
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

) ∞∑
k=1

(−1)k−1 ξ
k

k

=
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

)(
ξ − ξ2

2
+
ξ3

3
− · · ·

)
=

(
ξ2 + ξ

)
−
(
ξ + ξ2 − 5

12
ξ3 +O(ξ4)

)
=

5
12
ξ3 +O(ξ4).

Thus, c = 5
12 6= 0 (again, the error constant of Table 1), and the order is p = 2 as

before.

Example The implicit 2-step method

yn+2 − 3yn+1 + 2yn = h

[
13
12

f(tn+2,yn+2)−
5
3
f(tn+1,yn+1)−

5
12

f(tn,yn)
]

(21)

has order two. This can easily be verified using the criteria of Theorem 2.1. However,
consider the trivial IVP

y′(t) = 0, y(0) = 1,

with solution y(t) = 1. For this example the right-hand side of (21) is always zero, so
we immediately get the 3-term recurrence relation

yn+2 − 3yn+1 + 2yn = 0.

The general solution of this equation is given by

yn = c1 + c22n, n = 0, 1, . . . , (22)

with arbitrary constants c1 and c2. This can easily be verified using induction.
While the choice c1 = 1 and c2 = 0 does provide the exact solution, in practice

we will have to initialize the method with two values y0 and y1, and most likely these

28

values will be different (which is equivalent to having c2 6= 0 in (22) above). In this
case, however, the numerical solution blows up (since 2n →∞ for n→∞). Thus, only
for one very special set of starting values do we have an accurate solution. In general,
the method does not converge (even though it is consistent, and is even of order 2).

We are now ready to present a necessary and sufficient condition for convergence
of a multistep method that is very easy to check. To this end we have

Definition 2.2 A (complex) polynomial p obeys the root condition if

• all its zeros, i.e., all z such that p(z) = 0, lie in the unit disk, i.e., |z| ≤ 1, and

• all zeros on the unit circle are simple, i.e., if |z| = 1 then p′(z) 6= 0.

Theorem 2.3 (Dahlquist Equivalence Theorem) Consider the general multistep method
(cf. (19))

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m), n = 0, 1, . . . ,

and assume that the starting values y1,y2, . . . ,ys−1 are accurate, i.e., they are deter-
mined up to an error that tends to zero for h → 0. Then the multistep method is
convergent if and only if it is consistent and the polynomial ρ obeys the root condition.

Proof The proof is too involved to be included here.

Remark 1. An immediate – and very important – consequence of the Equivalence
Theorem is that a multistep method whose characteristic polynomial ρ does not
satisfy the root condition cannot be convergent. Do not use such methods!

2. We will see later that the fact that ρ satisfies the root condition is equivalent to
stability of a multistep method. Therefore, for multistep methods,

convergence ⇐⇒ consistency & stability.

Example Earlier we claimed that the implicit 2-step method

yn+2 − 3yn+1 + 2yn = h

[
13
12

f(tn+2,yn+2)−
5
3
f(tn+1,yn+1)−

5
12

f(tn,yn)
]

(23)

has order two, and gave a counterexample to show that it cannot be convergent. Now
we can use the Dahlquist Equivalence Theorem to establish this fact. The characteristic
polynomial ρ of the method is given by

ρ(w) =
2∑

m=0

amw
m = w2 − 3w + 2 = (w − 1)(w − 2),

and we see that ρ violates the root condition since one of its zeros, w = 2, lies outside
the unit disk. According to the Equivalence Theorem it cannot be convergent.

29

Example The characteristic polynomials ρ for all Adams methods (both AB and AM)
are of the same type, namely,

ρ(w) = ws − w = w(ws−1 − 1),

and so they all satisfy the root condition. As a consequence, all Adams methods are
convergent (since we already established that they are consistent).

If we look at the general s-step method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m), n = 0, 1, . . . ,

then we see that this method involves 2s + 1 free parameters (after normalization).
Therefore, one might think that it is possible to construct an s-step method that is of
order 2s. Unfortunately, there is another theorem by Dahlquist that states that one
cannot have a convergent s-step method of order 2s for any s ≥ 3. More precisely,

Theorem 2.4 (Dahlquist’s First Barrier) The maximal order of a convergent s-step
method is at most

• s+ 2 for implicit schemes with s even,

• s+ 1 for implicit schemes with s odd, and

• s for explicit schemes.

Proof Also too complicated.

Remark 1. A procedure for construction of a convergent s-step method of order
s+ 1 is outlined in the textbook.

2. Adams-Bashforth methods are optimal in the sense that the corresponding order
is as high as possible. The same is true for Adams-Moulton formulas with odd s.
It can be shown that implicit s-step methods of order s + 2 are of questionable
stability.

2.4 Backward Differentiation Formulae

As mentioned earlier, the “extreme” choice ρ(w) = ws−1(w − 1) that always satisfies
the root condition and also places as many of the zeros at the origin yields the family
of Adams methods. If we, on the other hand, choose an extreme σ(w) = βws, then we
obtain the so-called backward differentiation formulae (BDFs).

These methods have their name from the way in which they can be derived. Starting
from the ODE y′(t) = f(t,y) we do not integrate as before (and fit the integrand f on
the right-hand side by a polynomial), but instead fit the derivative y′ on the left-hand
side by the derivative of the interpolating polynomial to the s + 1 data points chosen
backward from the new point, i.e., (tn+s,yn+s), (tn+s−1,yn+s−1), . . . , (tn,yn).

30

Example In the simplest case, s = 1, we get the Backward Euler method. The inter-
polating polynomial to the data (tn+1,yn+1), (tn,yn) is given by

p(τ) =
tn+1 − τ
tn+1 − tn

yn +
τ − tn+1

tn+1 − tn
yn+1,

and its derivative is
p′(τ) = −1

h
yn +

1
h

yn+1,

where we have use tn+1− tn = h as usual. If we replace the right-hand side of the ODE
by f(tn+1,yn+1), then we end up with the numerical method

−1
h

yn +
1
h

yn+1 = f(tn+1,yn+1) ⇐⇒ yn+1 = yn + hf(tn+1,yn+1)

– the backward Euler method.

In general, one can show that once the form of the polynomial σ and the order s
are chosen, then the method is determined.

Lemma 2.5 For a BDF of order s with σ(w) = βws we have

β =

(
s∑

m=1

1
m

)−1

, and ρ(w) = β

s∑
m=1

1
m
ws−m(w − 1)m.

Proof Straightforward algebra using (20) and a Taylor series expansion for the loga-
rithm. See textbook.

Example In the simplest case s = 1 we have σ(w) = βw with β = 1 and ρ(w) = w−1.
This gives us the backward Euler method mentioned above.

For s = 2 we have σ(w) = βw2, and

β =

(
2∑

m=1

1
m

)−1

=
1

1 + 1
2

=
2
3
.

With this value

ρ(w) = β

2∑
m=1

1
m
ws−m(w − 1)m =

2
3

[
w(w − 1) +

1
2
(w − 1)2

]
= w2 − 4

3
w +

1
3
.

This results in the BDF formula

yn+2 −
4
3
yn+1 +

1
3
yn =

2
3
hf(tn+2,yn+2).

While the Adams methods were constructed so that they satisfy the root condition,
this is no longer automatically true for the BDFs. In fact, we have

Theorem 2.6 The characteristic polynomial ρ for a BDF satisfies the root condition
and the underlying BDF method is convergent if and only if 1 ≤ s ≤ 6.

31

Order Formula LTE

1 yn+1 = yn + hfn+1 −h2

2
y′′(η)

2 yn+2 − 4
3
yn+1 + 1

3
yn = 2h

3
fn+2 − 2h3

9
y′′′(η)

3 yn+3 − 18
11

yn+2 + 9
11

yn+1 − 2
11

yn = 6h
11

fn+3 − 3h4

22
y(4)(η)

4 yn+4 − 48
25

yn+3 + 36
25

yn+2 − 16
25

yn+1 + 3
25

yn = 12h
25

fn+4 − 12h5

125
y(5)(η)

5 yn+5 − 300
137

yn+4 + 300
137

yn+3 − 200
137

yn+2 + 75
137

yn+1 − 12
137

yn = 60h
137

fn+5 − 10h6

137
y(6)(η)

6 yn+6 − 360
147

yn+5 + 450
147

yn+4 − 400
147

yn+3 + 225
147

yn+2 − 72
147

yn+1 + 10
147

yn = 60h
147

fn+6 − 20h7

343
y(7)(η)

Table 3: Backward differentiation formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 6, LTE stands for local truncation error.

Proof Too involved.

Remark 1. The root condition fails for s > 6.

2. The coefficients and local truncation errors for all 6 BDFs of practical interest
are listed in Table 3.

3. Note that all BDF methods are implicit methods, and therefore special care is
needed for their implementation. However, as the following example shows (and
as we will see in more detail later), they have better stability properties than, say
AB methods, and are therefore better suited for stiff problems.

Example The Matlab script BDFDemo.m compares the performance of the second-order
BDF method with that of the second-order AB method for the linear – but stiff – ODE
system

y′(t) =
[
−10 1
0 −1

]
y, y(0) =

[
1
1

]
.

The solution to this problem is

y(t) =
[

1
9e

−t + 8
9e

−10t

e−t

]
,

and the presence of the two different scales in the first component of the solution is
what makes this problem stiff. We will discuss stiff problems in more detail in Section
4.

32

3 Runge-Kutta Methods

In contrast to the multistep methods of the previous section Runge-Kutta methods
are single-step methods - however, with multiple stages per step. They are motivated
by the dependence of the Taylor methods on the specific IVP. These new methods do
not require derivatives of the right-hand side function f in the code, and are therefore
general-purpose initial value problem solvers. Runge-Kutta methods are among the
most popular ODE solvers. They were first studied by Carle Runge and Martin Kutta
around 1900. Modern developments are mostly due to John Butcher in the 1960s.

3.1 Second-Order Runge-Kutta Methods

As always we consider the general first-order ODE system

y′(t) = f(t,y(t)). (24)

Since we want to construct a second-order method, we start with the Taylor expansion

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +O(h3).

The first derivative can be replaced by the right-hand side of the differential equation
(24), and the second derivative is obtained by differentiating (24), i.e.,

y′′(t) = f t(t,y) + fy(t,y)y′(t)
= f t(t,y) + fy(t,y)f(t,y),

with Jacobian fy. We will from now on neglect the dependence of y on t when it
appears as an argument to f . Therefore, the Taylor expansion becomes

y(t+ h) = y(t) + hf(t,y) +
h2

2
[f t(t,y) + fy(t,y)f(t,y)] +O(h3)

= y(t) +
h

2
f(t,y) +

h

2
[f(t,y) + hf t(t,y) + hfy(t,y)f(t,y)] +O(h3).(25)

Recalling the multivariate Taylor expansion

f(t+ h,y + k) = f(t,y) + hf t(t,y) + fy(t,y)k + . . .

we see that the expression in brackets in (25) can be interpreted as

f(t+ h,y + hf(t,y)) = f(t,y) + hf t(t,y) + hfy(t,y)f(t,y) +O(h2).

Therefore, we get

y(t+ h) = y(t) +
h

2
f(t,y) +

h

2
f(t+ h,y + hf(t,y)) +O(h3)

or the numerical method

yn+1 = yn + h

(
1
2
k1 +

1
2
k2

)
, (26)

33

with

k1 = f(tn,yn),
k2 = f(tn + h,yn + hk1).

This is the classical second-order Runge-Kutta method. It is also known as Heun’s
method or the improved Euler method.

Remark 1. The k1 and k2 are known as stages of the Runge-Kutta method. They
correspond to different estimates for the slope of the solution. Note that yn +hk1

corresponds to an Euler step with stepsize h starting from (tn,yn). Therefore, k2

corresponds to the slope of the solution one would get by taking one Euler step
with stepsize h starting from (tn,yn). The numerical method (26) now consists
of a single step with the average of the slopes k1 and k2.

2. The notation used here differs slightly from that used in the textbook. There the
stages are defined differently. I find the interpretation in terms of slopes more
intuitive.

We obtain general explicit second-order Runge-Kutta methods by assuming

y(t+ h) = y(t) + h
[
b1k̃1 + b2k̃2

]
+O(h3) (27)

with

k̃1 = f(t,y)
k̃2 = f(t+ c2h,y + ha21k̃1).

Clearly, this is a generalization of the classical Runge-Kutta method since the choice
b1 = b2 = 1

2 and c2 = a21 = 1 yields that case.
It is customary to arrange the coefficients aij , bi, and ci in a so-called Runge-Kutta

or Butcher tableaux as follows:

c A

bT .

Accordingly, the Butcher tableaux for the classical second-order Runge-Kutta method
is

0 0 0
1 1 0

1
2

1
2 .

Explicit Runge-Kutta methods are characterized by a strictly lower triangular ma-
trix A, i.e., aij = 0 if j ≥ i. Moreover, the coefficients ci and aij are connected by the
condition

ci =
ν∑

j=1

aij , i = 1, 2, . . . , ν.

34

This says that ci is the row sum of the i-th row of the matrix A. This condition is
required to have a method of order one. We limit our discussion to such methods now.

Thus, for an explicit second-order method we necessarily have a11 = a12 = a22 =
c1 = 0. We can now study what other combinations of b1, b2, c2 and a21 in (27) give
us a second-order method. The bivariate Taylor expansion yields

f(t+ c2h,y + ha21k̃1) = f(t,y) + c2hf t(t,y) + ha21fy(t,y)k̃1 +O(h2)
= f(t,y) + c2hf t(t,y) + ha21fy(t,y)f(t,y) +O(h2).

Therefore, the general second-order Runge-Kutta assumption (27) becomes

y(t+ h) = y(t) + h [b1f(t,y) + b2 {f(t,y) + c2hf t(t,y) + ha21fy(t,y)f(t,y)}] +O(h3)
= y(t) + (b1 + b2)hf(t,y) + b2h

2 [c2f t(t,y) + a21fy(t,y)f(t,y)] +O(h3).

In order for this to match the general Taylor expansion (25) we want

b1 + b2 = 1
c2b2 = 1

2
a21b2 = 1

2 .

Thus, we have a system of three nonlinear equations for our four unknowns. One
popular solution is the choice b1 = 0, b2 = 1, and c2 = a21 = 1

2 . This leads to the
modified Euler method or the (explicit) midpoint rule

yn+1 = yn + hk2

with

k1 = f(tn,yn)

k2 = f(tn +
h

2
,yn +

h

2
k1).

Its Butcher tableaux is of the form

0 0 0
1
2

1
2 0
0 1.

Remark The choice b1 = 1, b2 = 0 leads to Euler’s method. However, since now
c2b2 6= 1

2 and a21b2 6= 1
2 this method does not have second-order accuracy.

General explicit Runge-Kutta methods are of the form

yn+1 = yn + h

ν∑
j=1

bjkj

35

with

k1 = f(tn,yn)
k2 = f(tn + c2h,yn + a21hk1)

...

kν = f(tn + cνh,yn + h

ν−1∑
j=1

aν,jkj).

Determination of the coefficients is rather complicated. We now describe (without
derivation) the most famous Runge-Kutta method.

3.2 Fourth-Order Runge-Kutta Methods

The classical method is given by

yn+1 = yn + h

[
k1

6
+

k2

3
+

k3

3
+

k4

6

]
(28)

with

k1 = f(tn,yn)

k2 = f

(
tn +

h

2
,yn +

h

2
k1

)
k3 = f

(
tn +

h

2
,yn +

h

2
k2

)
k4 = f (tn + h,yn + hk3) .

Its Butcher tableaux is of the form

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6 .

The local truncation error for this method is O(h5). It is also important to note
that the classical fourth-order Runge-Kutta method requires four evaluations of the
function f per time step.

Remark We saw earlier that in each time step of the second-order Runge-Kutta
method we need to perform two evaluations of f , and for a fourth-order method there
are four evaluations. More generally, one can observe the situation described in Table 4.

These data imply that higher-order (> 4) Runge-Kutta methods are relatively
inefficient. Precise data for higher-order methods does not seem to be known. However,
certain higher-order methods may still be appropriate if we want to construct a Runge-
Kutta method which adaptively chooses the step size for the time step in order to keep
the local truncation error small (see Section 5).

36

evaluations of f per time step 2 3 4 5 6 7 8 9 10 11
maximum order achievable 2 3 4 4 5 6 6 7 7 8

Table 4: Efficiency of Runge-Kutta methods.

3.3 Connection to Numerical Integration Rules

We now illustrate the connection of Runge-Kutta methods to numerical integration
rules.

As before, we consider the IVP

y′(t) = f(t,y(t))
y(t0) = y0

and integrate both sides of the differential equation from t to t+ h to obtain

y(t+ h)− y(t) =
∫ t+h

t
f(τ,y(τ))dτ. (29)

Therefore, the solution to our IVP can be obtained by solving the integral equation
(29). Of course, we can use numerical integration to do this:

1. Using the left endpoint method∫ b

a
f(x)dx ≈ b− a

n︸ ︷︷ ︸
=h

n−1∑
i=0

f(xi)

on a single interval, i.e., with n = 1, and a = t, b = t+ h we get∫ t+h

t
f(τ,y(τ))dτ ≈ t+ h− t

1
f(τ0,y(τ0))

= hf(t,y(t))

since τ = t, the left endpoint of the interval. Thus, as we saw earlier, (29) is
equivalent to Euler’s method.

2. Using the trapezoidal rule∫ b

a
f(x)dx ≈ b− a

2
[f(a) + f(b)]

with a = t and b = t+ h gives us∫ t+h

t
f(τ,y(τ))dτ ≈ h

2
[f(t,y(t)) + f(t+ h,y(t+ h))] .

The corresponding IVP solver is therefore

yn+1 = yn +
h

2
f(tn,yn) +

h

2
f(tn+1,yn+1).

37

Note that this is not equal to the classical second-order Runge-Kutta method
since we have a yn+1 term on the right-hand side. This means that we have an
implicit method. In order to make the method explicit we can use Euler’s method
to replace yn+1 on the right-hand side by

yn+1 = yn + hf(tn,yn).

Then we end up with the method

yn+1 = yn +
h

2
f(tn,yn) +

h

2
f(tn+1,yn + hf(tn,yn))

or

yn+1 = yn + h

[
1
2
k1 +

1
2
k2

]
with

k1 = f(tn,yn)
k2 = f(tn + h,yn + hk1),

i.e., the classical second-order Runge-Kutta method.

3. The midpoint integration rule leads to the modified Euler method (or midpoint
rule).

4. Simpson’s rule yields the fourth-order Runge-Kutta method in case there is no
dependence of f on y.

5. Gauss quadrature leads to so-called Gauss-Runge-Kutta or Gauss-Legendre meth-
ods. One such method is the implicit midpoint rule

yn+1 = yn + hf(tn +
h

2
,
1
2
(yn + yn+1))

encountered earlier. The Butcher tableaux for this one-stage order two method
is given by

1
2

1
2

1.

Note that the general implicit Runge-Kutta method is of the form

yn+1 = yn + h

ν∑
j=1

bjkj

with

kj = f(tn + cjh,yn + h

j∑
i=1

aj,iki)

38

for all values of j = 1, . . . , ν. Thus, the implicit midpoint rule corresponds to

yn+1 = yn + hk1

with
k1 = f(tn +

h

2
,yn +

h

2
k1)

– obviously an implicit method.

6. More general implicit Runge-Kutta methods exist. However, their construction is
more difficult, and can sometimes be linked to collocation methods. Some details
are given at the end of Chapter 3 in the textbook.

39

4 Stiffness and Stability

There are two basic notions of stability. The first notion of stability is concerned with
the behavior of the numerical solution for a fixed value t > 0 as h→ 0.

Definition 4.1 A numerical IVP solver is stable if small perturbations in the initial
conditions do not cause the numerical approximation to diverge away from the true
solution provided the true solution of the initial value problem is bounded.

For a consistent s-step method one can show that the notion of stability and the
fact that its characteristic polynomial ρ satisfies the root condition are equivalent.
Therefore, as mentioned earlier, for an s-step method we have

convergence ⇐⇒ consistent & stable.

Remark Sometimes this notion of stability is referred to as zero stability.

This concept of stability also plays an important role in determining the global
truncation error. In fact, for a convergent (consistent and stable) method the local
truncation errors add up as expected, i.e., a convergent s-step method with O(hp+1)
local truncation error has a global error of order O(hp).

4.1 Linear Stability Analysis

A second notion of stability is concerned with the behavior of the solution as t → ∞
with a fixed stepsize h. This notion of stability is often referred to as absolute stability,
and it is important when dealing with stiff ODEs.
A Model Problem: For λ ∈ IR we consider the family of scalar linear initial value
problems (the discussion in the textbook uses the analogous system case)

y′(t) = λy(t), t ∈ [0, T],
y(0) = y0.

The solution of this problem is given by

y(t) = y0e
λt.

Now we take the same differential equation, but with perturbed initial condition

yδ(0) = y0 + δ.

Then the general solution still is yδ(t) = ceλt. However, the initial condition now
implies

yδ(t) = (y0 + δ)eλt.

Therefore, if λ ≤ 0, a small change in the initial condition causes only a small change
in the solution and therefore the problem is a stable problem. However, if λ > 0, then
large changes in the solution will occur (even for small perturbations of the initial
condition), and the problem is unstable.

An absolutely stable numerical method is one for which the numerical solution of a
stable problem behaves also in this controlled fashion.

40

Example We study how Euler’s method behaves for the stable model problem above,
i.e., in the case λ ≤ 0. Euler’s method states that

yn+1 = yn + hf(tn, yn)
= yn + hλyn

= (1 + λh)yn.

Therefore, by induction,
yn = (1 + λh)ny0.

Since the exact problem has an exponentially decaying solution for λ < 0, a stable
numerical method should exhibit the same behavior. Therefore, in order to ensure
stability of Euler’s method we need that the so-called growth factor |1 + λh| < 1. For
real λ < 0 this is equivalent to

−2 < hλ < 0 ⇐⇒ h <
−2
λ
.

Thus, Euler’s method is only conditionally stable, i.e., the step size has to be chosen
sufficiently small to ensure stability.

The set of λh for which the growth factor is less than one is called the linear stability
domain D.

Example For Euler’s method we have

|1 + λh| < 1

so that (for complex λ)

DEuler = {z = λh ∈ C|| : |z + 1| < 1},

a rather small circular subset of the left half of the complex plane.
FIGURE

Example On the other hand, we can show that the implicit or backward Euler method

yn+1 = yn + hf(tn+1, yn+1)

is unconditionally stable for the above problem.
To see this we have

yn+1 = yn + hλyn+1

or
(1− λh)yn+1 = yn.

Therefore,

yn =
(

1
1− λh

)n

y0.

Now, for λ < 0, the growth factor (
1

1− λh

)
< 1

41

for any h > 0, and we can choose the step size h arbitrarily large. Of course, this state-
ment pertains only to the stability of the method. In order to achieve an appropriate
accuracy, h still has to be chosen reasonably small. However, as we will see below,
we do not have to worry about stepsize constraints imposed by the stiffness of the
problem.

The linear stability domain for the backward Euler method is given by the entire
negative complex half-plane, i.e.,

DbackwardEuler = {z = λh ∈ C|| : Rez < 0} = C|| −.

In general, absolute stability of a linear multistep formula can be determined with
the help of its characteristic polynomials. In fact, an s-step method is absolutely stable
if the roots of the polynomial φ = ρ − λhσ lie inside the unit disk. Here ρ and σ are
defined as earlier, i.e.,

ρ(w) =
s∑

m=0

amw
m

σ(w) =
s∑

m=0

bmw
m

and am and bm are the coefficients of the s-step method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m, yn+m)

with f(tn+m, yn+m) = λyn+m, m = 0, . . . , s, given by the model problem.
The linear stability domain (also known as the region of absolute stability) of an

s-step method is then the region in the complex plane for which the roots of the
polynomial φ = ρ− λhσ lie inside the unit disk.

Example For Euler’s method ρ(w) = w − 1, and σ(w) = 1, so that

φ(w) = ρ(w)− λhσ(w) = (w − 1)− λh = w − (1 + λh)

with root 1 + λh. The region of absolute stability D is therefore

DEuler = {z = λh ∈ C|| : |1 + z| < 1},

the same region we found earlier.

Remark The ideas discussed above for scalar linear IVPs can be extended to both
nonlinear equations and systems of equations. Many of the properties of a method for
the scalar linear case carry over to the more complicated cases.

4.2 Stiffness

The phenomenon of stiffness is not precisely defined in the literature. Some attempts
at describing a stiff problem are:

42

• A problem is stiff if it contains widely varying time scales, i.e., some components
of the solution decay much more rapidly than others.

• A problem is stiff if the stepsize is dictated by stability requirements rather than
by accuracy requirements.

• A problem is stiff if explicit methods don’t work, or work only extremely slowly.

• A linear problem is stiff if all of its eigenvalues have negative real part, and the
stiffness ratio (the ratio of the magnitudes of the real parts of the largest and
smallest eigenvalues) is large.

• More generally, a problem is stiff if the eigenvalues of the Jacobian of f differ
greatly in magnitude.

Example A stiff ODE is illustrated in the Matlab script StiffDemo2.m. If one lights
a match, the ball of flame grows rapidly until it reaches critical size. Then it remains
at that size because the amount of oxygen being consumed by the combustion in the
interior of the ball balances the amount available through the surface. The model is

y′(t) = y(t)2 − y(t)3, y(0) = δ, t ∈ [0, 2/δ].

The scalar quantity y(t) represents the radius of the ball of flame at time t. The y2

and y3 terms in the model come from the surface area and volume, respectively. The
critical parameter is the initial radius, δ, which is “small”. The solution is sought on
an interval of time inversely proportional to δ. The solution to this problem will grow
very slowly until t reaches 1/δ, then a quick transition occurs to a value close to 1,
where the solution then remains. The exact solution

y(t) =
1

W (aea−t) + 1
,

where W is the Lambert W function (the solution of the equation W (z)eW (z) = z) and
a = 1/δ − 1 (see the Maple worksheet StiffDemo2.mws).

Note how it takes the “non-stiff” solver ode45 in StiffDemo2.m longer and longer
to obtain a solution for decreasing values of δ.

This problem is initially not stiff, but becomes so as the solution approaches the
steady state of 1.

Remark 1. Stiff ODEs arise in various applications; e.g., when modeling chemical
reactions, in control theory, or electrical circuits, such as the Van der Pol equation
in relaxation oscillation (see the Matlab script VanderPolDemo.m).

2. One way to deal with a stiff problem is to have an unconditionally stable solver.

4.3 A-Stability

Unconditional stability, in fact, unconditional stability for the model problem

y′(t) = λy(t), t ∈ [0, T]

43

y(0) = y0

is all that is needed for an effective stiff solver. This property is usually called A-
stability.

Definition 4.2 An s-step method is A-stable if its region of absolute stability includes
the entire negative real axis.

Remark This is covered in the textbook in the form of Lemma 4.7.

We already have seen one A-stable method earlier: the backward (or implicit) Euler
method

yn+1 = yn + hf(tn+1,yn+1).

In general, only implicit multistep methods are candidates for stiff solvers. However,
the following theorem (Dahlquist’s Second Barrier) reveals the limited accuracy that
can be achieved by such A-stable s-step methods.

Theorem 4.3 If a linear s-step method is A-stable then it must be an implicit method.
Moreover, the order of the method is at most 2.

Theorem 4.3 implies that the only other s-step Adams method we need to consider
is the implicit trapezoid method (or second-order Adams-Moulton method) introduced
earlier:

yn+2 = yn+1 +
h

2
[f(tn+2,yn+2) + f(tn+1,yn+1)] . (30)

To see that the implicit trapezoid method is A-stable we consider

yn+2 = yn+1 +
h

2
λ [yn+2 + yn+1]

or
(1− λh

2
)yn+2 = (1 + λ

h

2
)yn+1.

Therefore, as can be verified easily by induction,

yn =

(
1 + λh

2

1− λh
2

)n

y0,

and, for λ < 0, the growth factor

1 + λh
2

1− λh
2

=
2 + λh

2− λh
< 1

for any h > 0. In other words, the linear stability domain for the trapezoidal rule is

DTR = {z = λh ∈ C|| : Rez < 0} = C|| −.

Another method admitted by the Second Dahlquist Barrier is the second-order BDF
method. It can also be shown to be A-stable.

Furthermore, it can be shown that no explicit Runge-Kutta methods can be A-
stable. However, all implict Gauss-Legendre (Runge-Kutta) methods – such as the
implicit midpoint rule – are A-stable.

44

Remark Of course, one can also try to develop methods that do not completely satisfy
the condition of A-stability, and hope to achieve higher order by doing this. The state-
of-the-art stiff solvers today fall into one of the following two categories:

1. Higher-order BDF methods are almost A-stable (see Figure 4.4 in the textbook).
Gear methods are based on such BDF methods, and achieve higher-order along
with numerical stability for stiff problems by monitoring the largest and smallest
eigenvalues of the Jacobian matrix, and thus assessing and dealing with the stiff-
ness adaptively. Gear methods employ variable order as well as variable step size.
In Matlab, Gear methods are implemented in the stiff solver ode15s. In Maple
some of these methods are available through the method=lsode option (invoking
the Livermore ODEPACK by Hindmarsh) to dsolve,numeric.

2. Another class of stiff solvers are so-called Rosenbrock methods (which are related
to implicit Runge-Kutta methods). In Matlab a second-third order Rosenbrock
method is implemented in the routine ode23s. In Maple a third-fourth order
Rosenbrock method is the default implementation in dsolve,numeric with the
stiff=true option.

References for this subject are the books “Numerical Initial Value Problems in
Ordinary Differential Equations” by Bill Gear (1971), or “Solving Ordinary Differential
Equations II, Stiff and Differential-Algebraic Problems” by Hairer and Wanner (1991),
or the two books “Numerical Solution of Ordinary Differential Equations” by Larry
Shampine (1994) and “Computer Solution of Ordinary Differential Equations: the
Initial Value Problem” by Shampine and Gordon (1975).

45

5 Error Control

5.1 The Milne Device and Predictor-Corrector Methods

We already discussed the basic idea of the predictor-corrector approach in Section 2.
In particular, there we gave the following algorithm that made use of the 2nd-order
AB and AM (trapezoid) methods.
Algorithm

ỹn+2 = yn+1 + h
2 [3f(tn+1,yn+1)− f(tn,yn)]

yn+2 = yn+1 + h
2

[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
κ = 1

6 |ỹn+2 − yn+2|

if κ is relatively large, then

h← h/2 (i.e., reduce the stepsize)

repeat

else if κ is relatively small, then

h← 2h (i.e., increase the stepsize)

else

continue (i.e., keep h)

end

The basic idea of this algorithm is captured in a framework known as the Milne
device (see flowchart on p.77 of the textbook). Earlier we explained how we arrived at
the formula for the estimate, κ, of the local truncation error in the special case above.

For a general pair of explicit AB and implicit AM methods of (the same) order p
we have local truncation errors of the form

y(tn+s)− ỹn+s = c̃hp+1y(p+1)(ηAB) (31)

y(tn+s)− yn+s = chp+1y(p+1)(ηAM). (32)

Note that (as in the earlier case of 2nd-order methods) we have shifted the indices for
the two methods so that they align, i.e., the value to be determined at the current time
step has subscript n+ s.

If we assume that the derivative y(p+1) is nearly constant over the interval of interest,
i.e., y(p+1)(ηAB) ≈ y(p+1)(ηAM) ≈ y(p+1)(η), then we can subtract equation (32) from
equation (31) to get

yn+s − ỹn+s ≈ (c̃− c)hp+1y(p+1)(η),

and therefore
hp+1y(p+1)(η) ≈ 1

c̃− c
(
yn+s − ỹn+s

)
.

46

If we sustitute this expression back into (32) we get an estimate for the error at this
time step as

‖y(tn+2)−yn+2‖ = |c|hp+1‖y(p+1)(ηAM)‖ ≈ |c|hp+1‖y(p+1)(η)‖ ≈
∣∣∣∣ c

c̃− c

∣∣∣∣ ‖yn+s−ỹn+s‖.

Thus, in the flowchart, the Milne estimator κ is of the form

κ =
∣∣∣∣ c

c̃− c

∣∣∣∣ ‖yn+s − ỹn+s‖.

The reason for the upper bound hδ on κ for the purpose of stepsize adjustments (instead
of simply a tolerance δ for the global error) is motivated by the heuristics that the
transition from the local truncation error to the global error reduces the local error by
an order of h.

Remark 1. We point out that the use of the (explicit) predictor serves two pur-
poses here. First, it eliminates the use of iterative methods to cope with the
implicitness of the corrector, and secondly – for the same price – we also get an
estimator for the local error that allows us to use variable stepsizes, and thus
compute the solution more efficiently. Sometimes the error estimate κ is even
added as a correction (or extrapolation) to the numerical solution yn+s. How-
ever, this process rests on a somewhat shaky theoretical foundation, since one
cannot guarantee that the resulting value really is more accurate.

2. As mentioned earlier, since an s-step Adams method requires startup values at
equally spaced points, it may be necessary to compute these values via polynomial
interpolation (see the “remeshing” steps in the flowchart).

5.2 Richardson Extrapolation

Another simple, but rather inefficient, way to estimate the local error κ (and then again
use the general framework of the flowchart to obtain an adaptive algorithm) is to look
at two numerical approximations coming from the same method: one based on a single
step with stepsize h, and the other based on two steps with stepsize h/2. We first
describe the general idea of Richardson extrapolation, and then illustrate the idea on
the example of Euler’s method.

Whenever we approximate a quantity F by a numerical approximation scheme Fh

with a formula of the type

F = Fh +O(hp)︸ ︷︷ ︸
=Eh

, p ≥ 1, (33)

we can use an extrapolation method to combine already computed values (at stepsizes
h and h/2) to obtain a better estimate.

Assume we have computed two approximate values Fh (using stepsize h) and Fh/2

(using 2 steps with stepsize h/2) for the desired quantity F . Then the error for the
stepsize h/2 satisfies

Eh/2 ≈ c
(
h

2

)p

= c
hp

2p
≈ 1

2p
Eh.

47

Therefore, using (33),

F − Fh/2 = Eh/2 ≈
1
2p
Eh =

1
2p

(F − Fh).

This implies

F

(
1− 1

2p

)
≈ Fh/2 −

1
2p
Fh

or

F ≈ 2p

2p − 1

[
Fh/2 −

Fh

2p

]
.

The latter can be rewritten as

F ≈ 2p

2p − 1
Fh/2 −

1
2p − 1

Fh. (34)

This is the Richardson extrapolation formula.
Since the error Eh is given by F −Fh, and F in turn can be approximated via (34)

we also obtain an estimate for the error Eh, namely

Eh = F − Fh ≈
2p

2p − 1
Fh/2 −

1
2p − 1

Fh − Fh =
2p

2p − 1
[
Fh/2 − Fh

]
.

We can use this in place of κ and obtain an adaptive algorithm following the flowchart.

Example We know that Euler’s method

yn+1 = yn + hf(tn,yn)

produces a solution that is accurate up to terms of order O(h) so that p = 1. If we
denote by yn+1,h the solution obtained taking one step with step size h from tn to tn+1,
and by yn+1,h/2 the solution obtained taking two steps with step size h from tn to tn+1,
then we can use

yn+1 = 2yn+1,h/2 − yn+1,h

to improve the accuracy of Euler’s method, or to obtain the error estimate

κ = ‖yn+1,h/2 − yn+1,h‖.

5.3 Embedded Runge-Kutta Methods

For (explicit) Runge-Kutta methods another strategy exists for obtaining adaptive
solvers: the so-called embedded Runge-Kutta methods. With an embedded Runge-
Kutta method we also compute the value yn+1 twice. However, it turns out that we
can design methods of different orders that use the same function evaluations, i.e., the
function evaluations used for a certain lower-order method are embedded in a second
higher-order method.

In order to see what the local error estimate κ looks like we assume we have the
(lower order) method that produces a solution yn+1 such that

yn+1 = y(tn+1) + chp+1 +O(hp+2),

48

where y is the exact (local) solution based on the initial condition y(tn) = yn. Similarly,
the higher-order method produces a solution ỹn+1 such that

ỹn+1 = y(tn+1) +O(hp+2).

Subtraction of the second of these equations from the first yields

yn+1 − ỹn+1 ≈ chp+1,

which is a decent approximation of the error of the lower-order method. Therefore, we
have

κ = ‖yn+1 − ỹn+1‖.

Example One of the simplest examples of an embedded Runge-Kutta method is the
following second-third-order scheme defined by its (combined) Butcher tableaux

0 0 0 0
2
3

2
3 0 0

2
3 0 2

3 0
1
4

3
4 0

1
4

3
8

3
8 .

This implies that the second-order method is given by

yn+1 = yn + h

[
1
4
k1 +

3
4
k2

]
with

k1 = f(tn,yn)

k2 = f(tn +
2
3
h,yn +

2
3
hk1),

and the third-order method looks like

ỹn+1 = yn + h

[
1
4
k1 +

3
8
k2 +

3
8
k3

]
with the same k1 and k2 and

k3 = f(tn +
2
3
h,yn +

2
3
hk2).

Now, the local error estimator is given by

κ = ‖yn+1 − ỹn+1‖

=
3
8
h‖k2 − k3‖.

Now we can again use the adaptive strategy outlined in the flowchart, and have an
adaptive second-order Runge-Kutta method that uses only three function evaluations
per time step.

49

Remark 1. Sometimes people use the higher-order solution ỹn+1 as their numerical
approximation “justified” by the argument that this solution is obtained with a
higher-order method. However, a higher-order method need not be more accurate
than a lower-order method.

2. Another example of a second-third-order embedded Runge-Kutta method is im-
plemented in Matlab as ode23. However, its definition is more complicated since
the third-order method uses the final computed value of the second-order method
as its initial slope.

Example We now describe the classical fourth-fifth-order Runge-Kutta-Fehlberg method
which was first published in 1970. An implementation of this method is included in
nearly all numerical software packages. In Matlab the adaptive RKF45 method can be
accessed using the function ode45.

The fourth-order method is an “inefficient” one that uses five function evaluations
at each time step. Specifically,

yn+1 = yn + h

[
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5
k5

]
with

k1 = f(tn,yn),

k2 = f

(
tn +

h

4
,yn +

h

4
k1

)
,

k3 = f

(
tn +

3
8
h,yn +

3h
32

k1 +
9h
32

k2

)
,

k4 = f

(
tn +

12
13
h,yn +

1932h
2197

k1 −
7200h
2197

k2 +
7296h
2197

k3

)
,

k5 = f

(
t+ h,yn +

439h
216

k1 − 8hk2 +
3680h
513

k3 −
845h
4104

k4

)
.

The associated six-stage fifth-order method is given by

ỹn+1 = yn + h

[
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 −
9
50

k5 +
2
55

k6

]
,

where k1–k5 are the same as for the fourth-order method above, and

k6 = f

(
tn +

h

2
,yn −

8h
27

k1 + 2hk2 −
3544h
2565

k3 +
1859h
4104

k4 −
11h
40

k5

)
.

The local truncation error is again estimated by computing the deviation of the fourth-
order solution from the fifth-order result, i.e.,

κ = ‖yn+1 − ỹn+1‖.

The coefficients of the two methods can be listed in a combined Butcher tableaux
(see Table 5).

The advantage of this embedded method is that an adaptive fifth-order method has
been constructed that uses only six function evaluations for each time step.

50

0 0 0 0 0 0 0
1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 −7200

2197
7296
2197 0 0 0

1 439
216 -8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40 0
25
216 0 1408

2565
2197
4104 −1

5 0
16
135 0 6656

12825
28561
56430 − 9

50
2
55

Table 5: Combined Butcher tableaux for the fourth-fifth-order Runge-Kutta-Fehlberg
method.

Remark 1. Other embedded Runge-Kutta methods also exist. For example, a fifth-
sixth-order method is due to Dormand and Prince (1980). The coefficients of this
method can be found in some textbooks (not ours, though).

2. As mentioned earlier, Runge-Kutta methods are quite popular. This is probably
due to the fact that they have been known for a long time, and are relatively easy
to program. However, for so-called stiff problems, i.e., problems whose solution
exhibits both slow and fast variations in time, we saw earlier (in the Matlab script
StiffDemo2.m) that Runge-Kutta methods become very inefficient.

51

6 Nonlinear Algebraic Systems

We saw earlier that the implementation of implicit IVP solvers often requires the so-
lution of nonlinear systems of algebraic equations. Nonlinear systems also come up in
the solution of boundary values problems of ODEs and PDEs (see later sections). We
now briefly discuss some available techniques for the solution of a system of equations

G(z) = g(z)− z = 0 (35)

since essentially any implicit method can be transformed into this form.

Example For the implicit trapezoidal (AM2) method we saw earlier that

g(z) = yn +
h

2
f(tn,yn) +

h

2
f(tn+1,z).

Example If we were to implement the three-step Adams-Moulton formula

yn+3 = yn+2 +
h

12
[5f(tn+3,yn+3) + 8f(tn+2,yn+2)− f(tn+1,yn+1)]

as a stand-alone method (instead of in the context of predictor-corrector methods),
then we would have to find a root of G(z) = 0, where

g(z) = yn+2 +
h

12
[8f(tn+2,yn+2)− f(tn+1,yn+1)] +

5h
12

f(tn+3,z).

6.1 Functional Iteration

The functional iteration approach was already discusses in Section 1 in the context of
the implicit trapezoidal rule. We simply iterate

z[i+1] = g(z[i]), i = 0, 1, 2, . . .

with a good initial value z[0]. As mentioned earlier, convergence is guaranteed by the
Banach fixed-point theorem provided the norm of the Jacobian of g is small enough,
i.e.,

‖∂g

∂z
‖ < 1.

Remark 1. Functional iteration works rather well as long as the ODE is not stiff.
For stiff equations we should use either a Newton-Raphson or modified Newton-
Raphson method (see below).

2. Even for non-stiff problems it may happen that functional iteration only converges
for very small stepsizes h. Again, it is better to use a Newton-Raphson method.

52

6.2 Newton-Raphson Iteration

In order to see how Newton-Raphson iteration applies to our standard nonlinear prob-
lem (35) we expand about an arbitrary point z[i], i.e.,

G(z) = g(z)− z = 0⇐⇒ z = g(z) = g
(
z[i] + (z − z[i])

)
or – using a Taylor expansion –

z = g(z[i]) + (z − z[i])
∂g

∂z
(z[i]) +O

(
‖z − z[i]‖2

)
.

If we now proceed as in the derivation of the standard Newton method and drop the
second-order terms then we end up with

z − z[i] ≈ g(z[i]) + (z − z[i])
∂g

∂z
(z[i])− z[i]

or (
I − ∂g

∂z
(z[i])

)
(z − z[i]) ≈ g(z[i])− z[i].

This now motivates the iterative method

z[i+1] = z[i] −
(
I − ∂g

∂z
(z[i])

)−1 [
z[i] − g(z[i])

]
, i = 0, 1, . . . , (36)

which is known as the Newton-Raphson method.
Note the similarity with the standard (scalar) Newton method

z[i+1] = z[i] − g(z[i])− z[i]

g′(z[i])− 1
, i = 0, 1, . . . ,

which corresponds to (using G(z) = g(z)− z)

z[i+1] = z[i] − G(z[i])
G′(z[i])

, i = 0, 1, . . . ,

– the well-known formula for finding a zero of G.

Remark This is essentially the same as in the textbook. There, however, the function
g is represented in the form hg(z) + β.

As with the standard Newton iteration, one can show that – for a “good” starting
value z[0] – the iteration converges quadratically, i.e., the error satisfies

‖z − z[i+1]‖ ≤ c‖z − z[i]‖2,

where z is the exact root of G(z) = g(z)−z. In particular, if G is linear, then Newton-
Raphson iteration converges in a single step (cf. the linear boundary value problems in
the next section).

53

Example Solve

x2 + y2 = 4
xy = 1

which corresponds to finding the intersection points of a circle and a hyperbola in the
plane. Here

G(z) = G(x, y) =
[
G1(x, y)
G2(x, y)

]
=
[
x2 + y2 − 4
xy − 1

]
and

∂G

∂z
= J(x, y) =

[
∂G1
∂x

∂G1
∂y

∂G2
∂x

∂G2
∂y

]
(x, y) =

[
2x 2y
y x

]
.

This example is illustrated in the Matlab script run newtonmv.m.

Remark 1. It is apparent from formula (36) that implementation of the Newton-
Raphson method is rather expensive since we need to compute and evaluate the
entire Jacobian matrix ∂g

∂z (z[i]) at every iteration.

2. Moreover, each Newton-Raphson iteration requires the inverse of the Jacobian.
This, however, corresponds to the solution of a system of linear equations –
another expensive task.

In order to avoid both of these heavy computational burdens a modified Newton-
Raphson method has been proposed.

6.3 Modified Newton-Raphson Iteration

In the modified Newton-Raphson method we approximate the Jacobian (which really
should change in each iteration, cf. (36) by a fixed matrix, e.g., ∂g

∂z (z[0]). Now, we no
longer need to re-compute the Jacobian in every iteration, nor do we need to solve the
linear system (invert the Jacobian) in every iteration. However, quadratic convergence
is lost.

Remark Other, so-called quasi-Newton methods exist, that are analogous to the scalar
secant method (and thus avoid computation of the jacobian). These methods are more
cheaper to use than Newton-Raphson iteration. One such method is Broyden’s method.
It can be found it some textbooks on numerical analysis, e.g., Kincaid and Cheney’s
“Numerical Analysis: Mathematics of Scientific Computing”. A discussion of that
method goes beyond the scope of this course.

54

7 Boundary Value Problems for ODEs

Boundary values for ODEs are not covered in the textbook. We discuss this important
subject in the scalar case (single equation) only.

7.1 Boundary Value Problems: Theory

We now consider second-order boundary value problems of the general form

y′′(t) = f(t, y(t), y′(t))
a0y(a) + a1y

′(a) = α, b0y(b) + b1y
′(b) = β. (37)

Remark 1. Note that this kind of problem can no longer be converted to a system
of two first order initial value problems as we have been doing thus far.

2. Boundary value problems of this kind arise in many applications, e.g., in me-
chanics (bending of an elastic beam), fluids (flow through pipes, laminar flow in
a channel, flow through porous media), or electrostatics.

The mathematical theory for boundary value problems is more complicated (and
less well known) than for initial value problems. Therefore, we present a version of an
existence and uniqueness theorem for the general problem (37).

Theorem 7.1 Suppose f in (37) is continuous on the domain D = {(t, y, z) : a ≤
t ≤ b,−∞ < y <∞,−∞ < z <∞} and that the partial derivatives fy and fz are also
continuous on D. If

1. fy(t, y, z) > 0 for all (t, y, z) ∈ D,

2. there exists a constant M such that

|fz(t, y, z)| ≤M

for all (t, y, z) ∈ D, and

3. a0a1 ≤ 0, b0b1 ≥ 0, and |a0|+ |b0| > 0, |a0|+ |a1| > 0, |b0|+ |b1| > 0,

then the boundary value problem (37) has a unique solution.

Example Consider the BVP

y′′(t) + e−ty(t) + sin y′(t) = 0, 1 ≤ t ≤ 2,
y(1) = y(2) = 0.

To apply Theorem 7.1 we identify f(t, y, z) = −e−ty − sin z. Then

fy(t, y, z) = te−ty

which is positive for all t > 0, y, z ∈ IR. So, in particular it is positive for 1 ≤ t ≤ 2.
Moreover, we identify fz(t, y, z) = − cos z, so that

|fz(t, y, z)| = | − cos z| ≤ 1 = M.

Obviously, all continuity requirements are satisfied. Finally, we have a0 = b0 = 1 and
a1 = b1 = 0, so that the third condition is also satisfied. Therefore, the given problem
has a unique solution.

55

If the boundary value problem (37) takes the special form

y′′(t) = u(t) + v(t)y(t) + w(t)y′(t)
y(a) = α, y(b) = β, (38)

then it is called linear. In this case Theorem 7.1 simplifies considerably.

Theorem 7.2 If u, v, w in (38) are continuous and v(t) > 0 on [a, b], then the linear
boundary value problem (38) has a unique solution.

Remark A classical reference for the numerical solution of two-point BVPs is the book
“Numerical Methods for Two-Point Boundary Value Problems” by H. B. Keller (1968).
A modern reference is “Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations” by Ascher, Mattheij, and Russell (1995).

7.2 Boundary Value Problems: Shooting Methods

One of the most popular, and simplest strategies to apply for the solution of two-point
boundary value problems is to convert them to sequences of initial value problems, and
then use the techniques developed for those methods.

We now restrict our discussion to BVPs of the form

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y(b) = β. (39)

With some modifications the methods discussed below can also be applied to the more
general problem (37).

The fundamental idea on which the so-called shooting methods are based is to
formulate an initial value problem associated with (39). Namely,

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y′(a) = z. (40)

After rewriting this second-order initial value problem as two first-order problems we
can solve this problem with our earlier methods (e.g., Runge-Kutta or s-step methods),
and thus obtain a solution yz. In order to see how well this solution matches the solution
y of the two-point boundary value problem (39) we compute the difference

φ(z) := yz(b)− β

at the right end of the domain. If the initial slope z was chosen correctly, then φ(z) = 0
and we have solved the problem. If φ(z) 6= 0, we can use a solver for nonlinear systems
of equations (such as functional iteration or Newton-Raphson iteration discussed in the
previous section) to find a better slope.

Remark 1. Changing the “aim” of the initial value problem by adjusting the initial
slope to “hit” the target value y(b) = β is what gave the name to this numerical
method.

56

2. Even though the shooting method is fairly simple to implement, making use
of standard code for initial value problems, and a nonlinear equation solver, it
inherits the stability issues encountered earlier for IVP solvers. For boundary
value problems the situation is even worse, since even for a stable boundary value
problem, the associated initial value problem can be unstable, and thus hopeless
to solve.

We illustrate the last remark with

Example For λ < 0 the (decoupled) boundary value problem

y′1(t) = λy1(t)
y′2(t) = −λy2(t)

y1(0) = 1, y2(a) = 1

for t ∈ [0, a] is stable since the solution y1(t) = eλt, y2(t) = eaλe−λt remains bounded
for t→∞ even for large values of a. On the other hand, the initial value problem

y′1(t) = λy1(t)
y′2(t) = −λy2(t)

y1(0) = α, y2(0) = β

is unstable for any λ 6= 0 since always one of the components of the solution y1(t) =
αeλt, y2(t) = βe−λt will grow exponentially.

Remark A convergence analysis for the shooting method is very difficult since two
types of errors are now involved. On the one hand there is the error due to the IVP
solver, and on the other hand there is the error due to the discrepancy of the solution
at the right boundary.

We now explain how we can use Newton iteration as part of the shooting method.
Newton’s method for solving the nonlinear equation φ(z) = 0 is

z[i+1] = z[i] − φ(z[i])
φ′(z[i])

, i ≥ 0.

Now the problem is to obtain the value φ′(z[i]). Note that this is anything but obvious,
since we do not even have an expression for the function φ – only for the value φ(z[i]).

In order to obtain an expression for φ′(z[i]) we consider the initial value problem
(40) in the form

y′′(t, z) = f(t, y(t, z), y′(t, z))
y(a, z) = α, y′(a, z) = z. (41)

We now look at the change of the solution y with respect to the initial slope z, i.e.,

∂y′′(t, z)
∂z

=
∂

∂z
f(t, y(t, z), y′(t, z))

=
∂f

∂y

∂y

∂z
+
∂f

∂y′
∂y′

∂z
, (42)

57

where we have omitted the arguments of f , y, and y′ in the second line. The initial
conditions become

∂y

∂z
(a, z) = 0, and

∂y′

∂z
(a, z) = 1.

If we introduce the notation v(t) = ∂y
∂z (t, z), then (42) becomes

v′′(t) = ∂f
∂y (t, y(t), y′(t))v(t) + ∂f

∂y′ (t, y(t), y
′(t))v′(t)

v(a) = 0, v′(a) = 1. (43)

Equation (43) is called the first variational equation. We can recognize this as another
initial value problem for the function v.

Now,
φ(z) = y(b, z)− β,

so that
φ′(z) =

∂y

∂z
(b, z) = v(b).

Therefore, we can obtain the value φ′(zk) required in Newton’s method by solving the
initial value problem (43) up to t = b.

Algorithm

1. Provide an initial guess z0 and a tolerance δ.

2. Solve the initial value problems (40) and (43) with initial conditions

y(a) = α, y′(a) = z0, and v(a) = 0, v′(a) = 1,

respectively. Let i = 0. This provides us with φ(z[i]) = yz[i](b)− β and φ′(z[i]) =
v(b).

3. Apply Newton’s method, i.e., compute

z[i+1] = z[i] − φ(z[i])
φ′(z[i])

.

4. Check if |φ(z[i+1])| < δ. If yes, stop. Otherwise, increment i and repeat from 3.

Remark 1. Note that the computation of φ(z[i+1]) in Step 4 requires solution of
an IVP (40).

2. The initial value problems (40) and (43) can be solved simultaneously using a
vectorized IVP solver.

3. If the boundary value problem (39) is linear, then the function φ will also be linear,
and therefore a single step of the Newton method will provide the “correct” initial
slope.

58

4. It is also possible to subdivide the interval [a, b], and then apply the shooting
method from both ends. This means that additional (internal boundary) condi-
tions need to be formulated that ensure that the solutions match up at the sub-
division points. This leads to a system of nonlinear equations (even in the scalar
case!) which can then be solved using a (modified) Newton-Raphson method.
This approach is known as a multiple shooting method. More details can be
found in the book ”Introduction to Numerical Analysis” by Stoer and Bulirsch
(1980).

7.3 Boundary Value Problems: Finite Differences

Again we consider the boundary value problem

y′′(t) = f(t, y(t), y′(t))
y(a) = α, y(b) = β. (44)

Now we create a uniform partition of the interval [a, b] into m+1 subintervals [tk, tk+1],
k = 0, 1, . . . ,m, where

tk = a+ kh, k = 0, 1, . . . ,m+ 1, and h =
b− a
m+ 1

.

The basic idea is to discretize the differential equation (44) on the given partition.
Before we attempt to solve the BVP (44) we first review approximation of (contin-

uous) derivatives by (discrete) differences.

7.3.1 Numerical Differentiation

From calculus we know that the value of the derivative of a given function f at some
point x in its domain can be approximated via

f ′(x) ≈ f(x+ h)− f(x)
h

, (45)

where h is small. In order to get an error estimate for this approximation we use a
Taylor expansion of f

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(η), η ∈ (x, x+ h).

This implies

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(η),

i.e., the truncation error for the standard difference approximation of the first derivative
is O(h).

We now consider a more accurate approximation. To this end we take two Taylor
expansions

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(η1), (46)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(η2). (47)

59

Subtracting (47) from (46) yields

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

6
[
f ′′′(η1) + f ′′′(η2)

]
or the following formula

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (48)

for the first derivative which is more accurate than (45).
Similarly, by adding (46) and (47) we obtain the following formula for the second

derivative
f ′′(x) =

f(x− h)− 2f(x) + f(x+ h)
h2

+O(h2). (49)

As with the basic numerical integration methods, there is again a close connection
between numerical differentiation methods and polynomial interpolation. If we have
information of f at ν + 1 points, then we can find an interpolating polynomial p of
degree ν. We then differentiate p to get an estimate for the derivative of f .

Consider the error formula for the Lagrange form of the interpolating polynomial
(see (1) in Chapter 1)

f(x)− p(x) =
1

(ν + 1)!
f (ν+1)(ηx)w(x)

or

f(x) =
ν∑

k=0

f(ξk)pk(x) +
1

(ν + 1)!
f (ν+1)(ηx)w(x)

where w(x) =
ν∏

k=0

(x − ξk), and the pk are the Lagrange basis polynomials as studied

in Chapter 1. It is important for the next step to note that the point η in the error
formula depends on the evaluation point x. This explains the use of the notation ηx.

Differentiation then leads to

f ′(x) =
ν∑

k=0

f(ξk)p′k(x) +
1

(ν + 1)!
f (ν+1)(ηx)w′(x) +

1
(ν + 1)!

d

dx

[
f (ν+1)(ηx)

]
w(x).

Let us now assume that the evaluation point x is located at one of the interpolation
nodes, ξj say, i.e., we know f at certain points, and want to estimate f ′ at (some of)
those same points. Then w(ξj) = 0 and

f ′(ξj) =
ν∑

k=0

f(ξk)p′k(ξj) +
1

(ν + 1)!
f (ν+1)(ηξj

)w′(ξj).

One can simplify this expression to

f ′(ξj) =
ν∑

k=0

f(ξk)p′k(ξj) +
1

(ν + 1)!
f (ν+1)(ηξj

)
ν∏

i=0
i6=j

(ξj − ξi). (50)

60

Remark 1. If all nodes are equally spaced with spacing h, then (50) in an O(hν)
formula.

2. The values p′k(ξj) in (50) are called the coefficients of the derivative formula.

Example 1. Using linear interpolation at two equally spaced points, ξ0 = x and
ξ1 = x+ h, leads to the estimate (45).

2. (48) is obtained by performing quadratic interpolation at ξ0 = x−h, ξ1 = x, and
ξ2 = x+ h.

3. (49) is obtained by performing quadratic interpolation at ξ0 = x−h, ξ1 = x, and
ξ2 = x+ h.

4. These and other examples are illustrated in the Maple worksheet 472 DerivativeEstimates.mws.

Remark The discussion in Section 7.1 of the textbook employs a more abstract frame-
work based on discrete finite difference operators and formal Taylor expansions of these
operators.

We now return the the finite difference approximation of the BVP (44) and intro-
duce the following formulas for the first and second derivatives:

y′(t) =
y(t+ h)− y(t− h)

2h
− h2

6
y(3)(η)

y′′(t) =
y(t+ h)− 2y(t) + y(t− h)

h2
− h2

12
y(4)(τ). (51)

If we use the notation yk = y(tk) along with the finite difference approximations (51),
then the boundary value problem (44) becomes

y0 = α
yk+1 − 2yk + yk−1

h2
= f

(
tk, yk,

yk+1 − yk−1

2h

)
, k = 1, . . . ,m,

ym+1 = β. (52)

7.3.2 Linear Finite Differences

We now first discuss the case in which f is a linear function of y and y′, i.e.,

f(t, y(t), y′(t)) = u(t) + v(t)y(t) + w(t)y′(t).

Then (52) becomes

y0 = α
yk+1 − 2yk + yk−1

h2
= uk + vkyk + wk

yk+1 − yk−1

2h
, k = 1, . . . ,m,

ym+1 = β, (53)

where we have used the notation uk = u(tk), vk = v(tk), and wk = w(tk). This is a
system of m linear equations for the m unknowns yk, k = 1, . . . ,m. In fact, the system
is tridiagonal. This can be seen if we rewrite (53) as

y0 = α

61

(
−1− wk

2
h
)
yk−1 +

(
2 + h2vk

)
yk +

(
−1 +

wk

2
h
)
yk+1 = −h2uk, k = 1, . . . ,m,
ym+1 = β,

or in matrix form

2 + h2v1 −1 + w1
2 h 0 . . . 0

−1− w2
2 h 2 + h2v2 −1 + w2

2 h
...

...
.

...

... −1− wm−1

2 h 2 + h2vm−1 −1 + wm−1

2 h
0 . . . 0 −1− wm

2 h 2 + h2vm

×

×

y1

y2
...

ym−1

ym

 =

−h2u1 − α

(
−1− w1

2 h
)

−h2u2
...

−h2um−1

−h2um − β
(
−1 + wm

2 h
)

 .

Remark As with our earlier solvers for initial value problems (which were also used
for the shooting method) the numerical solution is obtained only as a set of discrete
values {yk : k = 0, 1, . . . ,m + 1}. However, all values are obtained simultaneously
once the linear system is solved.

The tridiagonal system above can be solved most efficiently if we can ensure that
it is diagonally dominant, since then a tridiagonal Gauss solver without pivoting can
be applied. Diagonal dominance for the above system means that we need to ensure

|2 + h2vk| > |1 +
h

2
wk|+ |1−

h

2
wk|.

This inequality will be satisfied if we assume vk > 0, and that the discretization is so
fine that |h2wk| < 1. Under these assumptions we get

2 + h2vk > 1 +
h

2
wk + 1− h

2
wk = 2 ⇐⇒ h2vk > 0

which is obviously true.

Remark 1. The assumption vk > 0 is no real restriction since this is also a condition
for the Existence and Uniqueness Theorem 7.2.

2. The assumption |h2wk| < 1 on the mesh size h is a little more difficult to verify.

For the linear finite difference method one can give error bounds.

Theorem 7.3 The maximum pointwise error of the linear finite difference method is
given by

max
k=1,...,m

|y(tk)− yk| ≤ Ch2, as h→ 0,

where y(tk) is the exact solution at tk, and yk is the corresponding approximate solution
obtained by the finite difference method.

62

Proof For the exact solution we have for any k = 1, . . . ,m

y′′(tk) = u(tk) + v(tk)y(tk) + w(tk)y′(tk)

or

y(tk + h)− 2y(tk) + y(tk − h)
h2

−h
2

12
y(4)(τk) = uk+vky(tk)+wk

[
y(tk + h)− y(tk − h)

2h
− h2

6
y(3)(ηk)

]
,

(54)
whereas for the approximate solution we have the relation

yk+1 − 2yk + yk−1

h2
= uk + vkyk + wk

yk+1 − yk−1

2h

(cf. (53)). Subtracting (53) from equation (54) yields

ek+1 − 2ek + ek−1

h2
= vkek + wk

ek+1 − ek
2h

+ h2gk, (55)

where
ek = y(tk)− yk

and
gk =

1
12
y(4)(τk)−

1
6
y(3)(ηk).

Since (55) is analogous to (53) it can be rewritten as(
−1− wk

2
h
)
ek−1 +

(
2 + h2vk

)
ek +

(
−1 +

wk

2
h
)
ek+1 = −h4gk.

Then we get∣∣(2 + h2vk

)
ek
∣∣ = ∣∣∣−(−1− wk

2
h
)
ek−1 −

(
−1 +

wk

2
h
)
ek+1 − h4gk

∣∣∣
and using the triangle inequality∣∣(2 + h2vk

)
ek
∣∣ ≤ ∣∣∣(−1− wk

2
h
)
ek−1

∣∣∣+ ∣∣∣(−1 +
wk

2
h
)
ek+1

∣∣∣+ ∣∣h4gk

∣∣ .
Now we let λ = ‖e‖∞ = maxj=1,...,m |ej |, and pick the index k such that

|ek| = ‖e‖∞ = λ,

i.e., we look at the largest of the errors. Therefore

|2 + h2vk| |ek|︸︷︷︸
=λ

≤ h4|gk|+ | − 1 +
wk

2
h| |ek+1|︸ ︷︷ ︸

≤λ

+| − 1− wk

2
h| |ek−1|︸ ︷︷ ︸

≤λ

.

Using the definition of λ, and bounding |gk| by its maximum we have

λ
(
|2 + h2vk| − | − 1 +

wk

2
h| − | − 1− wk

2
h|
)
≤ h4‖g‖∞.

63

Using the same assumptions and arguments as in the diagonal dominance discussion
above, the expression in parentheses is equal to h2vk, and therefore we have

λh2vk ≤ h4‖g‖∞ ⇐⇒ λvk ≤ h2‖g‖∞,

or, since λ = ‖e‖∞,
max

k=1,...,m
|y(tk)− yk| ≤ Ch2,

where
C =

‖g‖∞
mina≤t≤b v(t)

.

Remark The error bound in Theorem 7.3 holds only for C4 functions y, whereas for
the solution to exist only C2 continuity is required.

7.3.3 Nonlinear Finite Differences

We now return to the original discretization

y0 = α
yk+1 − 2yk + yk−1

h2
= f

(
tk, yk,

yk+1 − yk−1

2h

)
, k = 1, . . . ,m,

ym+1 = β

of the boundary value problem (44). However, now we allow f to be a nonlinear
function. This leads to the following system of nonlinear equations:

2y1 − y2 + h2f

(
t1, y1,

y2 − α
2h

)
− α = 0

−yk−1 + 2yk − yk+1 + h2f

(
tk, yk,

yk+1 − yk−1

2h

)
= 0, k = 2, . . . ,m− 1,

−ym−1 + 2ym + h2f

(
tm, ym,

β − ym−1

2h

)
− β = 0. (56)

One can show that this system has a unique solution provided

h <
2
M
,

where M is the same as in the Existence and Uniqueness Theorem 7.1.
To solve the system we need to apply Newton iteration for nonlinear systems. This

is done by solving the linear system

J(y[i])u = −F (y[i])

for u, and then updating
y[i+1] = y[i] + u,

64

where y[i] is the i-th iterate of the vector of grid values y0, y1, . . . , ym+1, and J is the
tridiagonal Jacobian matrix defined by

J(y)k` =

−1 + h

2fz

(
tk, yk,

yk+1−yk−1

2h

)
, k = `− 1, ` = 2, . . . ,m,

2 + h2fy

(
tk, yk,

yk+1−yk−1

2h

)
, k = `, ` = 1, . . . ,m,

−1− h
2fz

(
tk, yk,

yk+1−yk−1

2h

)
, k = `+ 1, ` = 1, . . . ,m− 1.

Here f = f(t, y, z) and F (y) is given by the left-hand side of the equations in (56).

Remark 1. As always, Newton iteration requires a “good” initial guess y1, . . . , yn.

2. One can show that the nonlinear finite difference method also has O(h2) conver-
gence order.

65

8 Boundary Value Problems for PDEs

Before we specialize to boundary value problems for PDEs – which only make sense for
elliptic equations – we need to explain the terminology “elliptic”.

8.1 Classification of Partial Differential Equations

We therefore consider general second-order partial differential equations (PDEs) of the
form

Lu = autt + buxt + cuxx + f = 0, (57)

where u is an unknown function of x and t, and a, b, c, and f are given functions. If
these functions depend only on x and t, then the PDE (57) is called linear. If a, b, c,
or f depend also on u, ux, or ut, then the PDE is called quasi-linear.

Remark 1. The notation used in (57) suggests that we think of one of the variables,
t, as time, and the other, x, as space.

2. In principle, we could also have second-order PDEs involving more than one space
dimension. However, we limit the discussion here to PDEs with a total of two
independent variables.

3. Of course, a second-order PDE can also be independent of time, and contain
two space variables only (such as Laplace’s equation). These will be the elliptic
equations we are primarily interested in.

There are three fundamentally different types of second-order quasi-linear PDEs:

• If b2 − 4ac > 0, then L is hyperbolic.

• If b2 − 4ac = 0, then L is parabolic.

• If b2 − 4ac < 0, then L is elliptic.

Example 1. The wave equation

utt = α2uxx + f(x, t)

is a second-order linear hyperbolic PDE since a ≡ 1, b ≡ 0, and c ≡ −α2, so that

b2 − 4ac = 4α2 > 0.

2. The heat or diffusion equation
ut = kuxx

is a second-order quasi-linear parabolic PDE since a = b ≡ 0, and c ≡ −k, so
that

b2 − 4ac = 0.

66

3. For Poisson’s equation (or Laplace’s equation in case f ≡ 0)

uxx + uyy = f(x, y)

we use y instead of t. This is a second-order linear elliptic PDE since a = c ≡ 1
and b ≡ 0, so that

b2 − 4ac = −4 < 0.

Remark Since a, b, and c may depend on x, t, u, ux, and ut the classification of the
PDE may even vary from point to point.

8.2 Boundary Value Problems for Elliptic PDEs: Finite Differences

We now consider a boundary value problem for an elliptic partial differential equation.
The discussion here is similar to Section 7.2 in the textbook.

We use the following Poisson equation in the unit square as our model problem,
i.e.,

∇2u = uxx + uyy = f(x, y), (x, y) ∈ Ω = (0, 1)2,
u(x, y) = φ(x, y), (x, y) on ∂Ω. (58)

This problem arises, e.g., when we want to determine the steady-state temperature
distribution u in a square region with prescribed boundary temperature φ. Of course,
this simple problem can be solved analytically using Fourier series.

However, we are interested in numerical methods. Therefore, in this section, we use
the usual finite difference discretization of the partial derivatives, i.e.,

uxx(x, y) =
1
h2

[u(x+ h, y)− 2u(x, y) + u(x− h, y)] +O(h2) (59)

and
uyy(x, y) =

1
h2

[u(x, y + h)− 2u(x, y) + u(x, y − h)] +O(h2). (60)

The computational grid introduced in the domain Ω = [0, 1]2 is now

(xk, y`) = (kh, `h), k, ` = 0, . . . ,m+ 1,

with mesh size h = 1
m+1 .

Using the compact notation

uk,` = u(xk, y`), uk+1,` = u(xk + h, y`), etc.,

The Poisson equation (58) turns into the difference equation

1
h2

[uk−1,` − 2uk,` + uk+1,`] +
1
h2

[uk,`−1 − 2uk,` + uk,`+1] = fk,`. (61)

This equation can be rewritten as

4uk,` − uk−1,` − uk+1,` − uk,`−1 − uk,`+1 = −h2fk,`. (62)

67

Example Let’s consider a computational mesh of 5× 5 points, i.e., h = 1
4 , or m = 3.

Discretizing the boundary conditions in (58), the values of the approximate solution
around the boundary

u0,`, u4,` ` = 0, . . . , 4,
uu,0, uk,4 k = 0, . . . , 4,

are determined by the appropriate values of φ. There remain 9 points in the interior of
the domain that have to be determined using the stencil (62). Figure 1 illustrates one
instance of this task. By applying the stencil to each of the interior points, we obtain
9 conditions for the 9 undetermined values.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 1: Illustration of finite difference method for Poisson equation on 5 × 5 grid.
Interior mesh points are indicated with blue ◦, green + correspond to given boundary
values, and points marked with red ♦ form a typical stencil.

Thus, we obtain the following 9 equations

4u1,1 − u2,1 − u1,2 = u0,1 + u1,0 − h2f1,1

4u2,1 − u1,1 − u3,1 − u2,2 = u2,0 − h2f2,1

4u3,1 − u2,1 − u3,2 = u4,1 + u3,0 − h2f3,1

4u1,2 − u2,2 − u1,1 − u1,3 = u0,2 − h2f1,2

4u2,2 − u1,2 − u3,2 − u2,1 − u2,3 = −h2f2,2

4u3,2 − u2,2 − u3,1 − u3,3 = u4,2 − h2f3,2

4u1,3 − u2,3 − u1,2 = u1,4 + u0,3 − h2f1,3

4u2,3 − u1,3 − u3,3 − u2,2 = u2,4 − h2f2,3

4u3,3 − u2,3 − u3,2 = u4,3 + u3,4 − h2f3,3.

The first equation corresponds to the stencil shown in Figure 1. The other equations
are obtained by moving the stencil row-by-row across the grid from left to right.

We can also write the above equations in matrix form. To this end we introduce
the vector

u = [u1,1, u2,1, u3,1, u1,2, u2,2, u3,2, u1,3, u2,3, u3,3]T

of unknowns. Here we have used the natural (row-by-row) ordering of the mesh points.
Then we get

Au = b

68

with

A =

 4 −1 0
−1 4 −1
0 −1 4

 −1 0 0
0 −1 0
0 0 −1

 0 0 0
0 0 0
0 0 0

 −1 0 0

0 −1 0
0 0 −1

 4 −1 0
−1 4 −1
0 −1 4

 −1 0 0
0 −1 0
0 0 −1

 0 0 0

0 0 0
0 0 0

 −1 0 0
0 −1 0
0 0 −1

 4 −1 0
−1 4 −1
0 −1 4

and

b =

u0,1 + u1,0 − h2f1,1

u2,0 − h2f2,1

u4,1 + u3,0 − h2f3,1

u0,2 − h2f1,2

−h2f2,2

u4,2 − h2f3,2

u1,4 + u0,3 − h2f1,3

u2,4 − h2f2,3

u4,3 + u3,4 − h2f3,3

.

We can see that A is a block-tridiagonal matrix of the form

A =

 T −I O
−I T −I
O −I T

 .
In general, for problems with m ×m interior mesh points, A will be of size m2 ×m2

(since there are m2 unknown values at interior mesh points), but contain no more than
5m2 nonzero entries (since equation (62) involves at most 5 points at one time). Thus,
A is a classical example of a sparse matrix. Moreover, A still has a block-tridiagonal
structure

A =

T −I O . . . O

−I T −I
...

O
. O

... −I T −I
O . . . O −I T

with m×m blocks

T =

4 −1 0 . . . 0

−1 4 −1
...

0
. 0

... −1 4 −1
0 . . . 0 −1 4

as well as m×m identity matrices I, and zero matrices O.

69

Remark 1. Since A is sparse (and symmetric positive definite) it lends itself to an
application of an iterative system solver such as Gauss-Seidel iteration. After
initializing the values at all mesh points (including those along the boundary) to
some appropriate value (in many cases zero will work), we can simply iterate with
formula (62), i.e., we obtain the algorithm fragment for M steps of Gauss-Seidel
iteration

for i = 1 to M do

for k = 1 to m do

for ` = 1 to m do
uk,` =

(
uk−1,` + uk+1,` + uk,`−1 + uk,`+1 − h2fk,`

)
/4

end

end

end

Note that the matrix A never has to be fully formed or stored during the com-
putation.

2. State-of-the-art algorithms for the Poisson (or homogeneous Laplace) equation are
so-called fast Poisson solvers based on the fast Fourier transform, or multigrid
methods.

While we know that at each gridpoint the Laplacian uxx + uyy is approximated by
finite differences with accuracy O(h2), one can show that (globally) the error is also of
order O(h2).

Theorem 8.1 The maximum pointwise error of the finite difference method with the
5-point stencil introduced above applied to the Poisson problem on a square, rectangular,
or L-shaped domain is given by

max
k,`=1,...,m

|u(xk, y`)− uk,`| ≤ Ch2, as h→ 0,

where u(xk, y`) is the exact solution at (xk, y`), and uk,` is the corresponding approxi-
mate solution obtained by the finite difference method.

We emphasize that this estimate holds only for the type of domains specified in the
theorem. If the stencil does not match the domain exactly, then we need to use special
boundary correction terms to maintain O(h2) accuracy (more details are given in the
textbook on pages 121/122).

70

9 Boundary Value Problems: Collocation

We now present a different type of numerical method that will yield the approximate
solution of a boundary value problem in the form of a function, as opposed to the
set of discrete points resulting from the methods studied earlier. Just like the finite
difference method, this method applies to both one-dimensional (two-point) boundary
value problems, as well as to higher-dimensional elliptic problems (such as the Poisson
problem).

We limit our discussion to the one-dimensional case. Assume we are given a general
linear two-point boundary value problem of the form

Ly(t) = f(t), t ∈ [a, b],
y(a) = α, y(b) = β. (63)

To keep the discussion as general as possible, we now let

V = span{v1, . . . , vn}

denote an approximation space we wish to represent the approximate solution in. We
can think of V as being, e.g., the space of polynomials or splines of a certain degree,
or some radial basis function space.

We will express the approximate solution in the form

y(t) =
n∑

j=1

cjvj(t), t ∈ [a, b],

with unknown coefficients c1, . . . , cn. Since L is assumed to be linear we have

Ly =
n∑

j=1

cjLvj ,

and (63) becomes

n∑
j=1

cjLvj(t) = f(t), t ∈ [a, b], (64)

n∑
j=1

cjvj(a) = α,

n∑
j=1

cjvj(b) = β. (65)

In order to determine the n unknown coefficients c1, . . . , cn in this formulation we
impose n collocation conditions to obtain an n × n system of linear equations for the
cj .

The last two equations in (64) ensure that the boundary conditions are satisfied,
and give us the first two collocation equations. To obtain the other n − 2 equations
we choose n − 2 collocation points t2, . . . , tn−1, at which we enforce the differential
equation. As in the previous numerical methods, this results in a discretization of the
differential equation.

71

If we let t1 = a and tn = b, then (64) becomes
n∑

j=1

cjvj(t1) = α,

n∑
j=1

cjLvj(ti) = f(ti), i = 2, . . . , n− 1,

n∑
j=1

cjvj(tn) = β.

In matrix form we have the linear system
v1(t1) v2(t1) . . . vn(t1)
Lv1(t2) Lv2(t2) . . . Lvn(t2)

...
...

Lv1(tn−1) Lv2(tn−1) . . . Lvn(tn−1)
v1(tn) v2(tn) . . . vn(tn)

c1
c2
...
cn

 =

α

f(t2)
...

f(tn−1)
β

 . (66)

If the space V and the collocation points ti, i = 1, . . . , n, are chosen such that the
collocation matrix in (66) is nonsingular then we can represent an approximate solution
of (63) from the space V uniquely as

y(t) =
n∑

j=1

cjvj(t), t ∈ [a, b].

Remark Note that this provides the solution in the form of a function that can be
evaluated anywhere in [a, b]. No additional interpolation is required as was the case
with the earlier methods.

9.1 Radial Basis Functions for Collocation

The following discussion will be valid for any sufficiently smooth radial basic function.
However, to be specific, we will choose the multiquadric basic function

φ(r) =
√
r2 + σ2, σ > 0,

with r = | · −t| the distance from a fixed center t. If we center a one multiquadric at
each of the collocation points tj , j = 1, . . . , n, then the approximation space becomes

V = span{φ(| · −tj |), j = 1, . . . , n}.

Now the system (66) becomes
φ(|t1 − t1|) φ(|t1 − t2|) . . . φ(|t1 − tn|)
Lφ(|t2 − t1|) Lφ(|t2 − t2|) . . . Lφ(|t2 − tn|)

...
...

Lφ(|tn−1 − t1|) Lφ(|tn−1 − t2|) . . . Lφ(|tn−1 − tn|)
φ(|tn − t1|) φ(|tn − t2|) . . . φ(|tn − tn|)

c1
c2
...
cn

 =

α

f(t2)
...

f(tn−1)
β

 .
(67)

To get a better feel for this system we consider an example.

72

Example Let the differential operator L be given by

Ly(t) = y′′(t) + wy′(t) + vy(t),

and φ denote the multiquadric radial basic function. Then

Lφ(|t− τ |) = φ′′(|t− τ |) + wφ′(|t− τ |) + vφ(|t− τ |)

with

φ′(|t− τ |) =
d

dt
φ(|t− τ |)

=
d

dt

√
|t− τ |2 + σ2

=
t− τ√

|t− τ |2 + σ2

and

φ′′(|t− τ |) =
d

dt
φ′(|t− τ |)

=
d

dt

t− τ√
|t− τ |2 + σ2

=

√
|t− τ |2 + σ2 − (t−τ)2√

|t−τ |2+σ2

|t− τ |2 + σ2

=
σ2

(|t− τ |2 + σ2)3/2
.

Therefore, we get

Lφ(|t− τ |) =
σ2

(|t− τ |2 + σ2)3/2
+ w

t− τ√
|t− τ |2 + σ2

+ v
√
|t− τ |2 + σ2,

and the collocation matrix has entries of this type in rows 2 through n− 1 with τ = tj ,
j = 2, . . . , n− 1.

Remark 1. This method was suggested by Kansa (1990) and is one of the most pop-
ular approaches for solving boundary value problems with radial basis functions.
The popularity of this method is due to the fact that it is simple to implement
and it generalizes in a straightforward way to boundary value problems for elliptic
partial differential equations in higher space dimensions.

2. It was not known for a long time whether the matrix for this kind of radial
basis function collocation was nonsingular for an arbitrary choice of collocation
points. However, recently Hon and Schaback (2001) showed that there exist
configurations of collcoation points (in the elliptic PDE setting in IR2) for which
the matrix will be singular for many of the most popular radial basis functions.

73

It is obvious that the matrix in (67) is not symmetric. This means that many effi-
cient linear algebra subroutines cannot be employed in its solution. Another approach
to radial basis function collocation which yields a symmetric matrix for operators L
with even order derivatives was suggested by Fasshauer (1997).

We now use a different approximation space, namely

V = span{φ(| · −t1|), φ(| · −tn|)} ∪ span{L(2)φ(| · −tj |), j = 2, . . . , n− 1}.

Here the operator L(2) is identical to L, but acts on φ as a function of the second
variable tj .

Since the approximate solution is now of the form

y(t) = c1φ(|t− t1|) +
n−1∑
j=2

cjL
(2)φ(|t− tj |) + cnφ(|t− tn|) (68)

we need to look at the collocation system one more time.
We start with (64), which – based on (68) – now becomes

c1φ(|a− t1|) +
n−1∑
j=2

cjL
(2)φ(|a− tj |) + cnφ(|a− tn|) = α,

c1Lφ(|t− t1|) +
n−1∑
j=2

cjLL
(2)φ(|t− tj |) + cnLφ(|t− tn|) = f(t), t ∈ [a, b],

c1φ(|b− t1|) +
n−1∑
j=2

cjL
(2)φ(|b− tj |) + cnφ(|b− tn|) = β.

If we enforce the collocation conditions at the interior points t2, . . . , tn−1, then we
get the system of linear equations

φ(|a− t1|) L(2)φ(|a− t2|) . . . L(2)φ(|a− tn−1|) φ(|a− tn|)
Lφ(|t2 − t1|) LL(2)φ(|t2 − t2|) . . . LL(2)φ(|t2 − tn−1|) Lφ(|t2 − tn|)

...
...

Lφ(|tn−1 − t1|) LL(2)φ(|tn−1 − t2|) . . . LL(2)φ(|tn−1 − tn−1|) Lφ(|tn−1 − tn|)
φ(|b− t1|) L(2)φ(|b− t2|) . . . L(2)φ(|b− tn−1|) φ(|b− tn|)

×

×

c1
c2
...

cn−1

cn

 =

α

f(t2)
...

f(tn−1)
β

 . (69)

Remark 1. The matrix in (69) is symmetric as claimed earlier. This is obvious
if L is a differential operator of even order. For odd-order terms one can see
that while differentiation with respect to the second variable introduces a sign
change, this sign change is canceled by an interchange of the arguments so that
Lφ(|ti − tj |) = L(2)φ(|tj − ti|) (see the example below).

74

2. Depending on whether globally or locally supported radial basis functions are
being used, we can now employ efficient linear solvers, such as Cholesky factor-
ization or the conjugate gradient method, to solve this system.

3. The most important advantage of the symmetric collocation method over the
non-symmetric one proposed by Kansa is that one can prove that the collocation
matrix in the symmetric case is nonsingular for all of the standard radial basis
functions and any choice of distinct collocation points.

4. Another benefit of using the symmetric form is that it is possible to give conver-
gence order estimates for this case.

5. Since terms of the form LL(2)φ are used, the symmetric collocation method has
the disadvantage that it requires higher smoothness. Moreover, computing and
coding these terms is more complicated than for the non-symmetric collocation
method.

Example We again consider the differential operator L given by

Ly(t) = y′′(t) + wy′(t) + vy(t),

and multiquadrics. Then

L(2)φ(|t− τ |) =
d2

dτ2
φ(|t− τ |) + w

d

dτ
φ(|t− τ |) + vφ(|t− τ |)

=
σ2

(|t− τ |2 + σ2)3/2
− w t− τ√

|t− τ |2 + σ2
+ v
√
|t− τ |2 + σ2,

which is almost the same as Lφ(|t− τ |) above except for the sign difference in the first
derivative term. The higher-order terms are rather complicated. In the special case
w = v = 0 we get

LL(2)φ(|t− τ |) =
15(t− τ)2σ2

(|t− τ |2 + σ2)7/2
− 3σ2

(|t− τ |2 + σ2)5/2
+

σ2

(|t− τ |2 + σ2)3/2
.

Remark Other basis functions such as polynomials or splines are also frequently used
for collocation. In particular, the use of polynomials leads to so-called spectral or
pseudo-spectral methods.

75

10 Pseudospectral Methods for Two-Point BVPs

Another class of very accurate numerical methods for BVPs (as well as many time-
dependent PDEs) are the so-called spectral or pseudospectral methods. The basic idea
is similar to the collocation method described above. However, now we use other
basis functions. The following discussion closely follows the first few chapters of Nick
Trefethen’s book “Numerical Methods in Matlab”.

Before we go into any details we present an example.

Example Consider the simple linear 2-pt BVP

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. The analytic solution of this problem is
given by

y(t) =
[
e4t − t sinh(4)− cosh(4)

]
/16.

In the Matlab program PSBVPDemo.m we compare the new pseudospectral approach
with the finite difference approach.

The high accuracy of the pseudospectral method is impressive, and we use this as
our motivation to take a closer look at this method.

As with all the other numerical methods, we require some sort of discretization. For
pseudospectral methods we do the same as for finite difference methods and the RBF
collocation methods, i.e., we introduce a set of grid points t1, t2, . . . , tN in the interval
of interest.

10.1 Differentiation Matrices

The main ingredient for pseudospectral methods is the concept of a differentiation
matrix D. This matrix will map a vector of function values y = [y(t1), . . . , y(tN)]T =
[y1, . . . ,yN]T at the grid points to a vector y′ of derivative values, i.e.,

y′ = Dy.

What does such a differentiation matrix look like? Let’s assume that the grid points
are uniformly spaced with spacing tj+1−tj = h for all j, and that the vector of function
values y comes from a periodic function so that we can add the two auxiliary values
y0 = yN and yN+1 = y1.

In order to approximate the derivative y′(tj) we start with another look at the finite
difference approach. We use the symmetric (second-order) finite difference approxima-
tion

y′(tj) ≈ y′j =
yj+1 − yj−1

2h
, j = 1, . . . , N.

Note that this formula also holds at both ends (j = 1 and j = N) since we are assuming
periodicity of the data.

These equations can be collected in matrix-vector form:

y′ = Dy

76

with y and y′ as above and

D =
1
h

0 1
2 −1

2

−1
2 0

. . .

. . .

. . . 0 1
2

1
2 −1

2 0

.

Remark This matrix has a very special structure. It is both Toeplitz and circulant.
In a Toeplitz matrix the entries in each diagonal are constant, while a circulant matrix
is generated by a single row vector whose entries are shifted by one (in a circulant
manner) each time a new row is generated. As we will see later, the fast Fourier
transform (FFT) can deal with such matrices in a particularly efficient manner.

As we saw earlier, there is a close connection between finite difference approx-
imations of derivatives and polynomial interpolation. For example, the symmetric
2nd-order approximation used above can also be obtained by differentiating the inter-
polating polynomial p of degree 2 to the data {(tj−1,yj−1), (tj ,yj), (tj+1,yj+1)}, and
then evaluating at t = tj .

We can also use a degree 4 polynomial to interpolate the 5 (symmetric) pieces of
data {(tj−2,yj−2), (tj−1,yj−1), (tj ,yj), (tj+1,yj+1), (tj+2,yj+2)}. This leads to (e.g.,
modifying the code in the Maple worksheet 472 DerivativeEstimates.mws)

y′(tj) ≈ y′j = −yj+2 − 8yj+1 + 8yj−1 − yj−2

12h
, j = 1, . . . , N,

so that we get the differentiation matrix

D =
1
h

0 2
3 − 1

12
1
12 −2

3
−2

3 0 2
3 − 1

12
1
12

.

− 1
12

1
12 −2

3 0 2
3

2
3 − 1

12
1
12 −2

3 0

.

Note that this matrix is again a circulant Toeplitz matrix (since the data is assumed to
be periodic). However, now there are 5 diagonals, instead of the 3 for the second-order
example above.

Example The fourth-order convergence of the finite-difference approximation above
is illustrated in the Matlab script FD4Demo.m.

It should now be clear that – in order to increase the accuracy of the finite-difference
derivative approximation to spectral order – we want to keep on increasing the polyno-
mial degree so that more and more grid points are being used, and the differentiation
matrix becomes a dense matrix. Thus, we can think of pseudospectral methods as
finite difference methods based on global polynomial interpolants instead of local ones.

77

For an infinite interval with infinitely many grid points spaced a distance h apart
one can show that the resulting differentiation matrix is given by the circulant Toeplitz
matrix

D =
1
h

...
. . . 1

3
. . . −1

2
. . . 1

0

−1
. . .

1
2

. . .

−1
3

. . .
...

. (70)

For a finite (even) N and periodic data we will show later that the differentiation
matrix is given by

DN =

...
. . . 1

2 cot 3h
2

. . . −1
2 cot 2h

2
. . . 1

2 cot 1h
2

0

−1
2 cot 1h

2

. . .
1
2 cot 2h

2

. . .

−1
2 cot 3h

2

. . .
...

. (71)

Example If N = 4, then we have

D4 =

0 1

2 cot 1h
2

1
2 cot 2h

2 −1
2 cot 1h

2

−1
2 cot 1h

2 0 1
2 cot 1h

2
1
2 cot 2h

2
1
2 cot 2h

2 −1
2 cot 1h

2 0 1
2 cot 1h

2
1
2 cot 1h

2
1
2 cot 2h

2 −1
2 cot 1h

2 0

 .
The Matlab script PSDemo.m illustrates the spectral convergence obtained with the
matrix DN for various values of N . The output should be compared with that of the
previous example FD4Demo.m.

10.2 Unbounded Grids and the Semi-Discrete Fourier Transform

We now consider an infinite uniform grid hZZ with grid points tj = jh for all integers
j. While this case is not useful for practical computation, it is important for our
understanding of problems on bounded intervals.

78

First we recall the definition of the Fourier transform ŷ of a function y that is
square-integrable on IR:

ŷ(ω) =
∫ ∞

−∞
e−iωty(t)dt, ω ∈ IR . (72)

Conversely, the inverse Fourier transform lets us reconstruct y from its Fourier trans-
form ŷ:

y(t) =
1
2π

∫ ∞

−∞
eiωtŷ(ω)dω, t ∈ IR . (73)

Example Consider the function

y(t) =

{
1, if − 1/2 ≤ t ≤ 1/2
0, otherwise,

and compute its Fourier transform.
By the definition of the Fourier transform, the definition of y and Euler’s formula

we have

ŷ(ω) =
∫ ∞

−∞
e−iωty(t)dt

=
∫ 1/2

−1/2
e−iωtdt

=
∫ 1/2

−1/2
[cos(ωt)− i sin(ωt)] dt

= 2
∫ 1/2

0
cos(ωt)dt

= 2
sin(ωt)
ω

∣∣∣∣1/2

0

=
sinω/2
ω/2

.

These functions play an important role in many applications (e.g., signal process-
ing). The function y is known as a square pulse or characteristic function of the interval
[−1/2, 1/2], and its Fourier transform ŷ is known as the sinc function.

If we restrict our attention to a discrete (unbounded) physical space, i.e., the func-
tion y is now given by the (infinite) vector y = [. . . ,y−1,y0,y1, . . .]T of discrete values,
then the formulas change. In fact, the semidiscrete Fourier transform of y is given by
the (continuous) function

ŷ(ω) = h
∞∑

j=−∞
e−iωtjyj , ω ∈ [−π/h, π/h], (74)

and the inverse semidiscrete Fourier transform is given by the (discrete infinite) vector
y whose components are of the form

yj =
1
2π

∫ π/h

−π/h
eiωtj ŷ(ω)dω, j ∈ ZZ. (75)

79

Remark Note that the notion of a semidiscrete Fourier transform is just a differ-
ent name for a Fourier series based on the complex exponentials e−iωtj with Fourier
coefficients yj .

The interesting difference between the continuous and semidiscrete setting is marked
by the bounded Fourier space in the semidiscrete setting. This can be explained by the
phenomenon of aliasing. Aliasing arises when a continuous function is sampled on a
discrete set. In particular, the two complex exponential functions f(t) = eiω1t and
g(t) = eiω2t differ from each other on the real line as long as ω1 6= ω2. However, if we
sample the two functions on the grid hZZ, then we get the vectors f and g with values
f j = eiω1tj and gj = eiω2tj . Now, if ω2 = ω1 + 2kπ/h for some integer k, then f j = gj

for all j, and the two (different) continuous functions f and g appear identical in their
discrete representations f and g. Thus, any complex exponential eiωt is matched on
the grid hZZ by infinitely many other complex exponentials (its aliases). Therefore we
can limit the representation of the Fourier variable ω to an interval of length 2π/h. For
reasons of symmetry we use [−π/h, π/h].

10.2.1 Spectral Differentiation

To get the interpolant of the yj values we can now use an extension of the inverse
semidiscrete Fourier transform, i.e., we define the interpolant to be the function

p(t) =
1
2π

∫ π/h

−π/h
eiωtŷ(ω)dω, t ∈ IR . (76)

It is obvious from this definition that p interpolates the data, i.e., p(tj) = yj , for any
j ∈ ZZ.

Moreover, the Fourier transform of the function p turns out to be

p̂(ω) =

{
ŷ(ω), ω ∈ [π/h, π, h]
0, otherwise

This kind of function is known as a band-limited function.
The spectral derivative vector y′ of y can now be obtained by one of the following

two procedures we are about to present. First,

1. Sample the function y at the (infinite set of) discrete points tj ∈ hZZ to obtain
the data vector y with components yj .

2. Compute the semidiscrete Fourier transform of the data via (74):

ŷ(ω) = h

∞∑
j=−∞

e−iωtjyj , ω ∈ [−π/h, π/h].

3. Find the band-limited interpolant p of the data yj via (76).

4. Differentiate p and evaluate at the tj .

80

However, from a computational point of view it is better to deal with this problem
in the Fourier domain. We begin by noting that the Fourier transform of the derivative
y′ is given by

ŷ′(ω) =
∫ ∞

−∞
e−iωty′(t)dt.

Applying integration by parts we get

ŷ′(ω) = e−iωty(t)
∣∣∞
−∞ + iω

∫ ∞

−∞
e−iωty(t)dt.

If y(t) tends to zero for t → ±∞ (which it has to for the Fourier transform to exist)
then we see that

ŷ′(ω) = iωŷ(ω). (77)

Therefore, we obtain the spectral derivative y′ by the following alternate procedure:

1. Sample the function y at the (infinite set of) discrete points tj ∈ hZZ to obtain
the data vector y with components yj .

2. Compute the semidiscrete Fourier transform of the data via (74):

ŷ(ω) = h
∞∑

j=−∞
e−iωtjyj , ω ∈ [−π/h, π/h].

3. Compute the Fourier transform of the derivative via (77):

ŷ′(ω) = iωŷ(ω).

4. Find the derivative vector via inverse semidiscrete Fourier transform (see (75)),
i.e.,

y′j =
1
2π

∫ π/h

−π/h
eiωtj ŷ′(ω)dω, j ∈ ZZ.

Now we need to find out how we can obtain the entries of the differentiation matrix
D from the preceding discussion. We follow the first procedure above.

In order to be able to compute the semidiscrete Fourier transform of an arbitrary
data vector y we represent its components in terms of shifts of (discrete) delta func-
tions, i.e.,

yj =
∞∑

k=−∞
ykδj−k, (78)

where the Kronecker delta function is defined by

δj =

{
1 j = 0
0 otherwise.

81

We use this approach since the semidiscrete Fourier transform of the delta function can
be computed easily. In fact, according to (74)

δ̂(ω) = h

∞∑
j=−∞

e−iωtjδj

= he−iωt0 = h

for all ω ∈ [−π/h, π/h]. Then the band-limited interpolant of δ is of the form (see (76))

p(t) =
1
2π

∫ π/h

−π/h
eiωtδ̂(ω)dω

=
1
2π

∫ π/h

−π/h
eiωthdω

=
h

π

∫ π/h

0
cos(ωt)dω

=
h

π

sin(ωt)
t

∣∣∣∣π/h

0

=
h

π

sin(πt/h)
t

=
sin(πt/h)
πt/h

= sinc(πt/h).

Therefore, the band-limited interpolant of an arbitrary data vector y is given by

p(t) =
1
2π

∫ π/h

−π/h
eiωtŷ(ω)dω

=
1
2π

∫ π/h

−π/h
eiωt

h ∞∑
j=−∞

e−iωtjyj

 dω
=

1
2π

∫ π/h

−π/h
eiωt

h ∞∑
j=−∞

e−iωtj

∞∑
k=−∞

ykδj−k

 dω.
Thus far we have used the definition of the band-limited interpolant (76), the def-
inition of the semidiscrete Fourier transform of y (74), and the representation (78).
Interchanging the summation, and then using the definition of the delta function and
the same calculation as for the band-limited interpolant of the delta function above we
obtain the final form of the band-limited interpolant of an arbitrary data vector y as

p(t) =
1
2π

∫ π/h

−π/h
eiωt

h ∞∑
k=−∞

yk

∞∑
j=−∞

e−iωtjδj−k

 dω
=

1
2π

∫ π/h

−π/h
eiωth

∞∑
k=−∞

yke
−iωtkdω

=
∞∑

k=−∞
yk

1
2π

∫ π/h

−π/h
eiω(t−tk)hdω

=
∞∑

k=−∞
yksinc

(t− tk)π
h

.

82

Example Band-limited interpolation for the functions

y1(t) =

{
1, t = 0
0, otherwise,

y2(t) =

{
1, |t| ≤ 3
0, otherwise,

and
y3(t) = (1− |t|/3)+.

is illustrated in the Matlab script BandLimitedDemo.m. Note that the accuracy of the
reproduction is not very high. Note, in particular, the Gibbs phenomenon that arises
for h→ 0. This is due to the low smoothness of the data functions.

In order to get the components of the derivative vector y′ we need to differentiate
the band-limited interpolant and evaluate at the grid points. By linearity this leads to

yj = p′(tj) =
∞∑

k=−∞
yk

d

dt

[
sinc

(t− tk)π
h

]
t=tj

,

or in (infinite) matrix form
y′ = Dy

with the entries of D given by

Djk =
d

dt

[
sinc

(t− tk)π
h

]
t=tj

, j, k = −∞, . . . ,∞.

The entries in the k = 0 column of D are of the form

Dj0 =
d

dt

[
sinc

tπ

h

]
t=tj=jh

=

{
0, j = 0
(−1)j

jh , otherwise,

The remaining columns are shifts of this column since the matrix is a Toeplitz matrix.
This is exactly of the form (70). The explicit formula for the derivative of the sinc
function above is obtained using elementary calculations:

d

dt

[
sinc

tπ

h

]
=

1
t

cos
(
tπ

h

)
− h

t2π
sin
(
tπ

h

)
,

so that
d

dt

[
sinc

tπ

h

]
t=tj=jh

=
1
jh

cos(jπ)− 1
j2hπ

sin(jπ).

83

10.3 Periodic Grids: The DFT and FFT

We now consider the case of a bounded grid with periodic data, i.e., we will now explain
how to find the entries in the matrix DN of (71).

To keep the discussion simple we will consider the interval [0, 2π] only, and assume
that we are given N (with N even) uniformly spaced grid points tj = jh, j = 1, . . . , N ,
with h = 2π/N .

Remark Formulas for odd N also exist, but are slightly different. For the sake of
clarity, we focus only on the even case here.

As in the previous subsection we now look at the Fourier transform of the discrete
and periodic data y = [y1, . . . ,yN]T with yj = y(jh) = y(2jπ/N), j = 1, . . . , N . For
the same reason of aliasing the Fourier domain will again be bounded. Moreover, the
periodicity of the data implies that the Fourier domain is also discrete (since only waves
eikt with integer wavenumber k have period 2π).

Thus, the discrete Fourier transform (DFT) is given by

ŷk = h
N∑

j=1

e−iktjyj , k = −N
2

+ 1, . . . ,
N

2
. (79)

Note that the (continuous) Fourier domain [π/h, π/h] used earlier now translates to
the discrete domain noted in (79) since h = 2π/N is equivalent to π/h = N/2.

The formula for the inverse discrete Fourier transform (inverse DFT) is given by

yj =
1
2π

N/2∑
k=−N/2+1

eiktj ŷk, j = 1, . . . , N. (80)

We obtain the spectral derivative of the finite vector data by exactly the same
procedure as in the previous subsection. First, we need the band-limited interpolant
of the data. It is given by the formula

p(t) =
1
2π

N/2∑′

k=−N/2

eiktŷk, t ∈ [0, 2π]. (81)

Here we define ŷ−N/2 = ŷN/2, and the prime on the sum indicates that we add the
first and last summands only with weight 1/2. This modification is required for the
band-limited interpolant to work properly.

Remark The band-limited interpolant is actually a trigonometric polynomial of degree
N/2, i.e., p(t) can be written as a linear combination of the trigonometric functions
1, sin t, cos t, sin 2t, cos 2t, . . . , sinNt/2, cosNt/2. We will come back to this fact when
we discuss non-periodic data.

Next, we want to represent an arbitrary periodic data vector y as a linear combina-
tion of shifts of periodic delta functions. We omit the details here (they can be found

84

in the Trefethen book) and give only the formula for the band-limited interpolant of
the periodic delta function:

p(t) = SN (t) =
sin(πt/h)

(2π/h) tan(t/2)
,

which is known as the periodic sinc function SN .
Now, just as in the previous subsection, the band-limited interpolant for an arbitrary

data function can be written as

p(t) =
N∑

k=1

ykSN (t− tk).

Finally, using the same arguments and similar elementary calculations as earlier, we
get

S′N (tj) =

{
0, j ≡ 0 (mod N),
1
2(−1)j cot(jh/2), j 6≡ 0 (mod N).

These are the entries of the N -th column of the Toeplitz matrix (71).

Example The Matlab script SpectralDiffDemo.m illustrates the use of spectral dif-
ferentiation for the not so smooth hat function and for the infinitely smooth function
y(t) = esin t.

10.3.1 Implementation via FFT

The most efficient computational approach is to view spectral differentiation in the
Fourier domain (the alternate approach earlier) and then implement the DFT via the
fast Fourier transform (FFT). The general outline is as follows:

1. Sample the function y at the (finite set of) discrete points tj , j = 1, . . . , N to
obtain the data vector y with components yj .

2. Compute the discrete Fourier transform of the (finite) data vector via (79):

ŷk = h

N∑
j=1

e−iktjyj , k = −N
2

+ 1, . . . ,
N

2
.

3. Compute the Fourier transform of the derivative based on (77), i.e.,

ŷ′k =

{
0, k = N/2,
ikŷk, otherwise.

4. Find the derivative vector via inverse discrete Fourier transform (see (80)), i.e.,

y′j =
1
2π

N/2∑
k=−N/2+1

eiktj ŷ′k, j = 1, . . . , N.

85

Remark Cooley and Tukey (1965) are usually given credit for discovering the FFT.
However, the same algorithm was already known to Gauss (even before Fourier com-
pleted his work on what is known today as the Fourier transform). A detailed discus-
sion of this algorithm goes beyond the scope of this course. We simply use the Matlab
implementations fft and ifft. These implementations are based on the current state-
of-the-art FFTW algorithm (the “fastest Fourier transform in the West”) developed at
MIT by Matteo Frigo and Steven G. Johnson.

Example The Matlab script SpectralDiffFFTDemo.m is an FFT version of the earlier
script SpectralDiffDemo.m. The FFT implementation is considerably faster than the
implementation based on differentiation matrices (see Computer Assignment 5).

10.4 Smoothness and Spectral Accuracy

Without getting into any details (see Chapter 4 of Trefethen’s book) we will simply
illustrate with a few examples the basic behavior of spectral differentiation:

The smoother the data, the more accurate the spectral derivative.

Example In the Matlab script SpectralAccuracyDemo.m we expand on the earlier
script SpectralDiffDemo.m and illustrate the dependence of the convergence rate of
spectral differentiation on the smoothness of the data more clearly for the four periodic
functions on [0, 2π]

y1(t) = | sin t|3,
y2(t) = exp(− sin−2(t/2)),

y3(t) =
1

1 + sin2(t/2)
,

y4(t) = sin(10t).

These functions are arranged according to their (increasing) smoothness. The function
y1 has a third derivative of bounded variation, y2 is infinitely differentiable (but not
analytic), y3 is analytic in the strip |Im(t)| < 2 ln(1 +

√
2) in the complex plane, and

y4 is band-limited.
Note: A continuous function y is of bounded variation if

sup
t0<t1<···<tN

N∑
j=1

|y(tj)− y(tj−1)|

is bounded for all choices of t0, t1, . . . , tN . Plainly said, a function of bounded variation
cannot “wiggle around too much”. For example, on the interval [0, 1/2] the function
y(t) = t2 sin(1/t) is of bounded variation while y(t) = t sin(1/t) is not.

10.5 Polynomial Interpolation and Clustered Grids

We already saw in the Matlab script BandLimitedDemo.m that a spectral interpolant
performs very poorly for non-smooth functions. Thus, if we just went ahead and treated
a problem on a bounded domain as a periodic problem via periodic extension, then the

86

resulting jumps that may arise at the endpoints of the original interval would lead to
Gibbs phenomena and a significant degradation of accuracy. Therefore, we do not use
the trigonometric polynomials (discrete Fourier transforms) but algebraic polynomials
instead.

For interpolation with algebraic polynomials we saw at the very beginning of this
course (in the Matlab script PolynomialInterpolationDemo.m) the effect that differ-
ent distributions of the interpolation nodes in a bounded interval have on the accuracy
of the interpolant (the so-called Runge phenomenon). Clearly, the accuracy is much
improved if the points are clustered near the endpoints of the interval. In fact, the
so-called Chebyshev points

tj = cos(jπ/N), j = 0, 1, . . . , N

yield a set of such clustered interpolation nodes on the standard interval [−1, 1]. These
points can easily be mapped by a linear transformation to any other interval [a, b]
(see Assignment 8). Chebyshev points arise often in numerical analysis. They are the
extremal points of the so-called Chebyshev polynomials (a certain type of orthogonal
polynomial). In fact, Chebyshev points are equally spaced on the unit circle, and there-
fore one can observe a nice connection between spectral differentiation on bounded
intervals with Chebyshev points and periodic problems on bounded intervals as de-
scribed earlier. It turns out that (contrary to our expectations) the FFT can also be
used for the Chebyshev case. However, we will only consider Chebyshev differentiation
matrices below.

10.6 Chebyshev Differentiation Matrices

Our last step in our preparation for the solution of general boundary value problems
is to determine the entries of the differentiation matrices to be used for problems on
bounded intervals (with non-periodic data).

As before, we follow our well-established approach for spectral differentiation:

1. Discretize the interval [−1, 1] using the Chebyshev points

tj = cos(jπ/N), j = 0, 1, . . . , N,

and sample the function y at those points to obtain the data vector y = [y(t0), y(t1), . . . , y(tN)]T .

2. Find the (algebraic) polynomial p of degree at most N that interpolates the data,
i.e., s.t.

p(ti) = yi, i = 0, 1, . . . , N.

3. Obtain the spectral derivative vector y′ by differentiating p and evaluating at the
grid points:

y′i = p′(ti), i = 0, 1, . . . , N.

This procedure (implicitly) defines the differentiation matrix DN that gives us

y′ = DNy.

Before we look at the general formula for the entries of DN we consider some simple
examples.

87

Example For N = 1 we have the two points t0 = 1 and t1 = −1, and the interpolant
is given by

p(t) =
t− t1
t0 − t1

y0 +
t0 − t
t0 − t1

y1

=
t+ 1

2
y0 +

1− t
2

y1.

The derivative of p is (the constant)

p′(t) =
1
2
y0 −

1
2
y1,

so that we have

y′ =
[

1
2y0 − 1

2y1
1
2y0 − 1

2y1

]
and the differentiation matrix is given by

D1 =
[

1
2 −1

2
1
2 −1

2

]
.

Example For N = 2 we start with the three Chebyshev points t0 = 1, t1 = 0, and
t2 = −1. The quadratice interpolating polynomial (in Lagrange form) is given by

p(t) =
(t− t1)(t− t2)

(t0 − t1)(t0 − t2)
y0 +

(t− t0)(t− t2)
(t1 − t0)(t1 − t2)

y1 +
(t− t0)(t− t1)

(t2 − t0)(t2 − t1)
y2

=
t(t+ 1)

2
y0 − (t− 1)(t+ 1)y1 +

(t− 1)t
2

y2.

Now the derivative of p is a linear polynomial

p′(t) =
(
t+

1
2

)
y0 − 2ty1 +

(
t− 1

2

)
y2,

so that – evaluating at the nodes – we have

y′ =

 3
2y0 − 2y1 + 1

2y2
1
2y0 − 1

2y2

−1
2y0 + 2y1 − 3

2y2

and the differentiation matrix is given by

D2 =

 3
2 −2 1

2
1
2 0 −1

2
−1

2 2 −3
2

 .
We note that the differentiation matrices no longer are Toeplitz or circulant. In-

stead, the entries satisfy (also in the general case below)

(DN)ij = −(DN)N−i,N−j .

For general N one can prove

88

Theorem 10.1 For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1)
Chebyshev spectral differentiation matrix DN be indexed from 0 to N . The entries of
this matrix are

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DN)jj =
−tj

2(1− t2j)
, j = 1, . . . , N − 1,

(DN)ij =
ci
cj

(−1)i+j

(ti − tj)
, i 6= j, i, j = 0, 1, . . . , N,

where

ci =

{
2, i = 0 or N,
1, otherwise.

This matrix is implemented in the Matlab script cheb.m that was already used in
the Matlab function PSBVP.m that we used in our motivational example PSBVPDemo.m
at the beginning of this chapter. Note that only the off-diagonal entries are computed
via the formulas given in the theorem. For the diagonal entries the formula

(DN)ii = −
N∑

j=0
j 6=i

(DN)ij

was used.

Example The spectral accuracy of Chebyshev differentiation matrices is illustrated in
the Matlab script ChebyshevAccuracyDemo.m. One should compare this to the earlier
script SpectralAccuracyDemo.m in the periodic case.

The functions used for the Chebyshev example are

y1(t) = |t|3,
y2(t) = exp(−t−2),

y3(t) =
1

1 + t2
,

y4(t) = t10.

These functions are again arranged according to their (increasing) smoothness. The
function y1 has a third derivative of bounded variation, y2 is infinitely differentiable
(but not analytic), y3 is analytic in [−1, 1], and y4 is a polynomial (which corresponds
to the band-limited case earlier).

Note that the error for the derivative of the function y2 dips to zero for N = 2 since
the true derivative is given by

y′2(t) = 2
exp(−t−2)

t3
,

and the values at t0 = 1, t1 = 0, and t2 = −1 are 2/e, 0, and −2/e, respectively. These
all lie on a line (the linear derivative of the quadratic interpolating polynomial).

89

10.7 Boundary Value Problems

We can now return to our introductory example, the 2-pt boundary value problem

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. Its analytic solution was given earlier as

y(t) =
[
e4t − t sinh(4)− cosh(4)

]
/16.

How do we solve this problem in the Matlab programs PSBVPDemo.m and PSBVP.m?
First, we note that – for Chebyshev differentiation matrices – we can obtain higher

derivatives by repeated application of the matrix DN , i.e., if

y′ = DNy,

then
y′′ = DNy′ = D2

Ny.

In other words, for Chebyshev differentiation matrices

D
(k)
N = Dk

N , k = 1, . . . , N,

and DN+1
N = 0.

Remark We point out that this fact is true only for the Chebyshev case. For the
Fourier differentiation matrices we established in the periodic case we in general have
Dk

N 6= D
(k)
N (see Assignment 8).

With the insight about higher-order Chebyshev differentiation matrices we can view
the differential equation above as

D2
Ny = f ,

where the right-hand side vector f = exp(4t), with t = [t0, t1, . . . , tN]T the vector of
Chebyshev points. This linear system, however, cannot be solved uniquely (one can
show that the matrix (N + 1) × (N + 1) matrix D2

N has an (N + 1)-fold eigenvalue
of zero). Of course, this is not a problem. In fact, it is reassuring, since we have not
yet taken into account the boundary conditions, and the ordinary differential equation
(without appropriate boundary conditions) also does not have a unique solution.

So the final question is, how do we deal with the boundary conditions?
We could follow either of two approaches. First, we can build the boundary condi-

tions into the spectral interpolant, i.e.,

1. Take the interior Chebyshev points t1, . . . , tN−1 and form the polynomial in-
terpolant of degree at most N that satisfies the boundary conditions p(−1) =
p(1) = 0 and interpolates the data vector at the interior points, i.e., p(tj) = yj ,
j = 1, . . . , N − 1.

2. Obtain the spectral derivative by differentiating p and evaluating at the interior
points, i.e.,

y′′j = p′′(tj), j = 1, . . . , N − 1.

90

3. Identify the (N − 1)× (N − 1) matrix D̃2
N from the previous relation, and solve

the linear system

D̃2
Ny(1 : N − 1) = exp(4t(1 : N − 1)),

where we used Matlab-like notation.

The second approach is much simpler to implement, but not as straightforward to
understand/derive. Since we already know the value of the solution at the boundary,
i.e., y0 = 0 and yN = 0, we do not need to include these values in our computa-
tion. Moreover, the values of the derivative at the endpoints are of no interest to us.
Therefore, we can simply solve the linear system

D̃2
Ny(1 : N − 1) = exp(4t(1 : N − 1)),

where
D̃2

N = D2
N (1 : N − 1, 1 : N − 1).

This is exactly what was done in the Matlab program PSBVP.m.

Remark One can show that the eigenvalues of D̃2
N are given by λn = −π2n2

4 , n =
1, 2, . . . , N − 1. Clearly, these values are all nonzero, and the problem has (as it should
have) a unique solution.

We are now ready to deal with more complicated boundary value problems. They
can be nonlinear, have non-homogeneous boundary conditions, or mixed-type boundary
conditions with derivative values specified at the boundary. We give examples for each
of these cases.

Example As for our initial value problems earlier, a nonlinear ODE-BVP will be
solved by iteration (either fixed-point, or Newton).

Consider
y′′(t) = ey(t), t ∈ (−1, 1)

with boundary conditions y(−1) = y(1) = 0. In the Matlab program NonlinearPSBVPDemo.m
we use fixed-point iteration to solve this problem.

Example Next, we consider a linear BVP with non-homogeneous boundary condi-
tions:

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y(−1) = 0, y(1) = 1. In the Matlab program PSBVPNonHomoBCDemo.m
this is simply done by replacing the first and last rows of the differentiation matrix D2
by corresponding rows of the identity matrix and then imposing the boundary values
in the first and last entries of the right-hand side vector f.

Example For a linear BVP with mixed boundary conditions such as

y′′(t) = e4t, t ∈ (−1, 1)

with boundary conditions y′(−1) = y(1) = 0 we can follow the same strategy as in the
previous example. Now, however, we need to replace the row of D2 that corresponds to
the derivative boundary condition with a row from the first-order differentiation matrix
D. This leads to the Matlab program PSBVPMixedBCDemo.m.

91

11 Galerkin and Ritz Methods for Elliptic PDEs

11.1 Galerkin Method

We begin by introducing a generalization of the collocation method we saw earlier for
two-point boundary value problems. Consider the elliptic PDE

Lu(x) = f(x), (82)

where L is a linear elliptic partial differential operator such as the Laplacian

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, x = (x, y, z) ∈ IR3 .

At this point we will not worry about the boundary conditions that should be posed
with (82).

As with the collocation method discussed earlier, we will obtain the approximate
solution in the form of a function (instead of as a collection of discrete values). There-
fore, we need an approximation space U = span{u1, . . . , un}, so that we are able to
represent the approximate solution as

u =
n∑

j=1

cjuj , uj ∈ U . (83)

Using the linearity of L we have

Lu =
n∑

j=1

cjLuj .

We now need to come up with n (linearly independent) conditions to determine the n
unknown coefficients cj in (83). If {Φ1, . . . ,Φn} is a linearly independent set of linear
functionals, then

Φi

 n∑
j=1

cjLuj − f

 = 0, i = 1, . . . , n, (84)

is an appropriate set of conditions. In fact, this leads to a system of linear equations

Ac = b

with matrix

A =

Φ1Lu1 Φ1Lu2 . . . Φ1Lun

Φ2Lu1 Φ2Lu2 . . . Φ2Lun
...

...
...

ΦnLu1 ΦnLu2 . . . ΦnLun

 ,
coefficient vector c = [c1, . . . , cn]T , and right-hand side vector

b =

Φ1f
Φ2f

...
Φnf

 .
Two popular choices are

92

1. Point evaluation functionals, i.e., Φi(u) = u(xi), where {x1, . . . ,xn} is a set of
points chosen such that the resulting conditions are linearly independent, and u
is some function with appropriate smoothness. With this choice (84) becomes

n∑
j=1

cjLuj(xi) = f(xi), i = 1, . . . , n,

and we now have an extension of the collocation method discussed in Chapter 9
to elliptic PDEs is the multi-dimensional setting.

2. If we let Φi(u) = 〈u, vi〉, an inner product of the function u with an appropriate
test function vi, then (84) becomes

n∑
j=1

cj〈Luj , vi〉 = 〈f, vi〉, i = 1, . . . , n.

If vi ∈ U then this is the classical Galerkin method, otherwise it is known as the
Petrov-Galerkin method.

11.2 Ritz-Galerkin Method

For the following discussion we pick as a model problem a multi-dimensional Poisson
equation with homogeneous boundary conditions, i.e.,

−∇2u = f in Ω, (85)
u = 0 on ∂Ω,

with domain Ω ⊂ IRd. This problem describes, e.g., the steady-state solution of a
vibrating membrane (in the case d = 2 with shape Ω) fixed at the boundary, and
subjected to a vertical force f .

The first step for the Ritz-Galerkin method is to obtain the weak form of (85). This
is accomplished by choosing a function v from a space U of smooth functions, and then
forming the inner product of both sides of (85) with v, i.e.,

−〈∇2u, v〉 = 〈f, v〉. (86)

To be more specific, we let d = 2 and take the inner product

〈u, v〉 =
∫∫
Ω

u(x, y)v(x, y)dxdy.

Then (86) becomes

−
∫∫
Ω

(uxx(x, y) + uyy(x, y))v(x, y)dxdy =
∫∫
Ω

f(x, y)v(x, y)dxdy. (87)

In order to be able to complete the derivation of the weak form we now assume that
the space U of test functions is of the form

U = {v : v ∈ C2(Ω), v = 0 on ∂Ω},

93

i.e., besides having the necessary smoothness to be a solution of (85), the functions
also satisfy the boundary conditions.

Now we rewrite the left-hand side of (87):∫∫
Ω

(uxx + uyy) vdxdy =
∫∫
Ω

[(uxv)x + (uyv)y − uxvx − uyvy] dxdy

=
∫∫
Ω

[(uxv)x + (uyv)y] dxdy −
∫∫
Ω

[uxvx − uyvy] dxdy.(88)

By using Green’s Theorem (integration by parts)∫∫
Ω

(Px +Qy)dxdy =
∫

∂Ω
(Pdy −Qdx)

the first integral on the right-hand side of (88) turns into∫∫
Ω

[(uxv)x + (uyv)y] dxdy =
∫

∂Ω
(uxvdy − uyvdx) .

Now the special choice of U , i.e., the fact that v satisfies the boundary conditions,
ensures that this term vanishes. Therefore, the weak form of (85) is given by∫∫

Ω

[uxvx + uyvy] dxdy =
∫∫
Ω

fvdxdy.

Another way of writing the previous formula is of course∫∫
Ω

∇u · ∇vdxdy =
∫∫
Ω

fvdxdy. (89)

To obtain a numerical method we now need to require U to be finite-dimensional
with basis {u1, . . . , un}. Then we can represent the approximate solution uh of (85) as

uh =
n∑

j=1

cjuj . (90)

The superscript h indicates that the approximate solution is obtained on some under-
lying discretization of Ω with mesh size h.

Remark 1. In practice there are many ways of discretizing Ω and selecting U .

(a) For example, regular (tensor product) grids can be used. Then U can consist
of tensor products of piecewise polynomials or B-spline functions that satisfy
the boundary conditions of the PDE.

(b) It is also possible to use irregular (triangulated) meshes, and again define
piecewise (total degree) polynomials or splines on triangulations satisfying
the boundary conditions.

94

(c) More recently, meshfree approximation methods have been introduced as
possible choices for U .

2. In the literature the piecewise polynomial approach is usually referred to as the
finite element method.

3. The discretization of Ω will almost always result in a computational domain that
has piecewise linear (Lipschitz-continuous) boundary.

We now return to the discussion of the general numerical method. Once we have
chosen a basis for the approximation space U , then it becomes our goal to determine
the coefficients cj in (90). By inserting uh into the weak form (89), and selecting as
trial functions v the basis functions of U we obtain a system of equations∫∫

Ω

∇uh · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n.

Using the representation (90) of uh we get

∫∫
Ω

∇

 n∑
j=1

cjuj

 · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n,

or by linearity

n∑
j=1

cj

∫∫
Ω

∇uj · ∇uidxdy =
∫∫
Ω

fuidxdy, i = 1, . . . , n. (91)

This last set of equations is known as the Ritz-Galerkin method and can be written in
matrix form

Ac = b,

where the stiffness matrix A has entries

Ai,j =
∫∫
Ω

∇uj · ∇uidxdy.

Remark 1. The stiffness matrix is usually assembled element by element, i.e., the
contribution to the integral over Ω is split into contributions for each element
(e.g., rectangle or triangle) of the underlying mesh.

2. Depending on the choice of the (finite-dimensional) approximation space U and
underlying discretization, the matrix will have a well-defined structure. This is
one of the most important applications driving the design of efficient linear system
solvers.

Example One of the most popular finite element versions is based on the use of
piecewise linear C0 polynomials (built either on a regular grid, or on a triangular
partition of Ω). The basis functions ui are “hat functions”, i.e., functions that are

95

piecewise linear, have value one at one of the vertices, and zero at all of its neighbors.
This choice makes it very easy to satisfy the homogeneous Dirichlet boundary conditions
of the model problem exactly (along a polygonal boundary).

Since the gradients of piecewise linear functions are constant, the entries of the
stiffness matrix essentially boil down to the areas of the underlying mesh elements.

Therefore, in this case, the Ritz-Galerkin method is very easily implemented. We
generate some examples with Matlab’s PDE toolbox pdetool.

It is not difficult to verify that the stiffness matrix for our example is symmetric
and positive definite. Since the matrix is also very sparse due to the fact that the “hat”
basis functions have a very localized support, efficient iterative solvers can be applied.
Moreover, it is known that the piecewise linear FEM converges with order O(h2).

Remark 1. The Ritz-Galerkin method was independently introduced by Walther
Ritz (1908) and Boris Galerkin (1915).

2. The finite element method is one of the most-thoroughly studied numerical meth-
ods. Many textbooks on the subject exist, e.g., “The Mathematical Theory of
Finite Element Methods” by Brenner and Scott (1994), “An Analysis of the Finite
Element Method” by Strang and Fix (1973), or “The Finite Element Method”
by Zienkiewicz and Taylor (2000).

11.3 Optimality of the Ritz-Galerkin Method

How does solving the Ritz-Galerkin equations (91) relate to the solution of the strong
form (85) of the PDE? First, we remark that the left-hand side of (89) can be interpreted
as a new inner product

[u, v] =
∫∫
Ω

∇u · ∇vdxdy (92)

on the space of functions whose first derivatives are square integrable and that vanish
on ∂Ω. This space is a Sobolev space, usually denoted by H1

0 (Ω).
The inner product [·, ·] induces a norm ‖v‖ = [v, v]1/2 on H1

0 (Ω). Now, using
this norm, the best approximation to u from H1

0 (Ω) is given by the function uh that
minimizes ‖u − uh‖. Since we define our numerical method via the finite-dimensional
subspace U of H1

0 (Ω), we need to find uh such that

u− uh ⊥ U

or, using the basis of U , [
u− uh, ui

]
= 0, i = 1, . . . , n.

Replacing uh with its expansion in terms of the basis of U we haveu− n∑
j=1

cjuj , ui

 = 0, i = 1, . . . , n,

96

or
n∑

j=1

cj [uj , ui] = [u, ui], i = 1, . . . , n. (93)

The right-hand side of this formula contains the exact solution u, and therefore is not
useful for a numerical scheme. However, by (92) and the weak form (89) we have

[u, ui] =
∫∫
Ω

∇u · ∇uidxdy

=
∫∫
Ω

fuidxdy.

Since the last expression corresponds to the inner product 〈f, ui〉, (93) can be viewed
as

n∑
j=1

cj [uj , ui] = 〈f, ui〉, i = 1, . . . , n,

which is nothing but the Ritz-Galerkin method (91).
The best approximation property in the Sobolev space H1

0 (Ω) can also be inter-
preted as an energy minimization principle. In fact, a smooth solution of the Poisson
problem (85) minimizes the energy functional

E(u) =
1
2

∫∫
Ω

∇2udxdy −
∫∫
Ω

fudxdy

over all smooth functions that vanish on the boundary of Ω. By considering the energy
of nearby solutions u+ λv, with arbitrary real λ we see that

E(u+ λv) =
1
2

∫∫
Ω

∇(u+ λv) · ∇(u+ λv)dxdy −
∫∫
Ω

f(u+ λv)dxdy

=
1
2

∫∫
Ω

∇u · ∇udxdy + λ

∫∫
Ω

∇u · ∇vdxdy +
λ2

2

∫∫
Ω

∇v · ∇vdxdy

−
∫∫
Ω

fudxdy − λ
∫∫
Ω

fvdxdy

= E(u) + λ

∫∫
Ω

[∇u · ∇v − fv] dxdy +
λ2

2

∫∫
Ω

∇2vdxdy

The right-hand side is a quadratic polynomial in λ, so that for a minimum, the term∫∫
Ω

[∇u · ∇v − fv] dxdy

must vanish for all v. This is again the weak formulation (89).
A discrete “energy norm” is then given by the quadratic form

E(uh) =
1
2
cTAc− bc

97

where A is the stiffness matrix, and c is such that the Ritz-Galerkin system (91)

Ac = b

is satisfied.

98

