1. (a) Solve the following linear system by LU factorization/Gauss elimination with pivoting:

$$
\begin{aligned}
2 x+6 y+10 z & =0 \\
x+3 y+3 z & =2 \\
3 x+14 y+28 z & =-8 .
\end{aligned}
$$

Show and explain all the details of your work.
(b) What do the matrices P, L and U look like?
2. Here are a matrix A and its L and U factors:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right], \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right], \quad U=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & -1 & 5 \\
0 & 0 & 8
\end{array}\right]
$$

(a) Use this information to compute $\operatorname{det}(A)$.
(b) Use this information to compute A^{-1}. Do not compute any matrix inverses - solve linear systems!
3. Find the Lagrange form of the interpolating polynomial for the data

x	-2	0	2
y	4	2	8

4. Determine whether the function

$$
S(x)= \begin{cases}10-24 x+18 x^{2}-4 x^{3}, & 1 \leq x \leq 2 \\ -54+72 x-30 x^{2}+4 x^{3}, & 2 \leq x \leq 3\end{cases}
$$

is a cubic spline on $[1,3]$.
5. Let $f(x)=x^{3}-4$.
(a) Apply four iterations of the bisection method on $[a, b]=[0,2]$ to approximate a root of f.
(b) Use Newton's method with $x_{0}=1$ to compute x_{3}.
6. Recall that Newton's method for systems of nonlinear equations is given by

Input $\boldsymbol{f}, J, \boldsymbol{x}^{(0)}$
for $n=0,1,2, \ldots$ do
Solve $J\left(\boldsymbol{x}^{(n)}\right) \boldsymbol{h}=-\boldsymbol{f}\left(\boldsymbol{x}^{(n)}\right)$ for \boldsymbol{h}
Update $\boldsymbol{x}^{(n+1)}=\boldsymbol{x}^{(n)}+\boldsymbol{h}$
end
Output $\boldsymbol{x}^{(n+1)}$
where the Jacobian is of the form

$$
J=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{m}}
\end{array}\right] .
$$

Perform one iteration of Newton's method starting with $\boldsymbol{x}^{(0)}=[\pi / 4, \pi / 4]^{T}$ to get an approximate solution of the system

$$
\begin{aligned}
5 \cos (\alpha)+6 \cos (\alpha+\beta) & =10 \\
5 \sin (\alpha)+6 \sin (\alpha+\beta) & =4 .
\end{aligned}
$$

7. Give one possible Matlab code fragment that would allow you to define the matrix

$$
A=\left[\begin{array}{cccccc}
-10 & 1 & 4 & 0 & 0 & 0 \\
1 & -10 & 0 & 4 & 0 & 0 \\
4 & 0 & -10 & 1 & 4 & 0 \\
0 & 4 & 1 & -10 & 0 & 4 \\
0 & 0 & 4 & 0 & -10 & 1 \\
0 & 0 & 0 & 4 & 1 & -10
\end{array}\right]
$$

in sparse matrix format.

