Math 350 - Some Extra Review Problems for Midterm 2

1. We know that the Lagrange functions satisfy $L_{k}\left(x_{j}\right)=\delta_{j k}$. This obviously implies

$$
\sum_{k=1}^{n} L_{k}(x)=1
$$

provided x is one of the interpolation nodes $x_{1}, x_{2}, \ldots, x_{n}$.
(a) Let $n=2$ and show that the above equation is true for all values of x.
(b) Show that the equation is even true for arbitrary values of n (and all values of x).
2. (a) Determine whether the function

$$
S(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ -\frac{1}{2}(2-x)^{2}+\frac{3}{2}, & 1 \leq x \leq 2 \\ \frac{3}{2}, & 2 \leq x \leq 3\end{cases}
$$

is a quadratic spline on $[0,3]$.
(b) Is it a cubic spline?
(c) Sketch the graph of S.
3. Since the bisection method improves the accuracy of its approximation to the root of the equation $f(x)=0$ by a factor of two in each iteration we are assured that the error e_{n} after n steps satisfies

$$
e_{n} \leq \frac{b-a}{2^{n+1}}
$$

where $[a, b]$ is the interval of interest.
(a) Let $[a, b]=[1.5,2]$ and use the error estimate above to determine how many steps of the bisection method are required to compute $\sqrt{3}$ with an error no more than 10^{-2}, i.e., when solving the equation $x^{2}-3=0$.
(b) Perform the actual calculations.
4. (a) Let $f(x)=-x^{3}-\cos x$ and $x_{0}=-1$. Use Newton's method to compute x_{2}.
(b) What happens if you start the iteration with $x_{0}=0$?
5. Recall that Newton's method for systems of nonlinear equations is given by

Input $\boldsymbol{f}, J, \boldsymbol{x}^{(0)}$
for $n=0,1,2, \ldots$ do
Solve $J\left(\boldsymbol{x}^{(n)}\right) \boldsymbol{h}=-\boldsymbol{f}\left(\boldsymbol{x}^{(n)}\right)$ for \boldsymbol{h}
Update $\boldsymbol{x}^{(n+1)}=\boldsymbol{x}^{(n)}+\boldsymbol{h}$
end
Output $\boldsymbol{x}^{(n+1)}$
where the Jacobian is of the form

$$
J=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \ldots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \ldots & \frac{\partial f_{2}}{\partial x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{m}}
\end{array}\right] .
$$

Perform two iterations of Newton's method starting with $\boldsymbol{x}^{(0)}=[0,1]^{T}$ to get an approximate solution of the system

$$
\begin{aligned}
& 4 x^{2}-y^{2}=0 \\
& 4 x y^{2}-x=1
\end{aligned}
$$

6. Suppose you are fitting a function of the form $f(t)=x_{1} t+x_{2} e^{t}$ to the three data points $(1,2)$, $(2,3),(3,5)$.
(a) Set up the overdetermined linear system $A x=b$ for the least squares problem needed to find the coefficients x_{1} and x_{2}.
(b) Set up the corresponding normal equations.
(c) Compute the least squares solution by solving the normal equations by hand.
7. A traitor in the Middle Ages was stretched on a rack to lengths $L=5,6$ and 7 feet under applied forces of $F=1,2$ and 4 tons. Assuming Hooke's law in the form $L=a+b F$, find his normal length a by least squares.
8. Describe how to derive a numerical integration formula based on a cubic interpolation polynomial at 4 equally spaced points for $\int_{a}^{b} f(x) d x$.
