You may again submit a diary file of your work session. However, if you write or use any M-files, please submit them as well so that I can reproduce your work.

1. Verify the change of orientation of the circular orbit problem, i.e., provide Matlab code that plots the orbit described by

$$
\begin{array}{lr}
y_{1}^{\prime}(t)=y_{2}(t), & y_{1}(0)=1 \\
y_{2}^{\prime}(t)=-y_{1}(t), & y_{2}(0)=0 .
\end{array}
$$

2. Plot the spiral-shaped orbit, i.e.,

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+y(t), & x(0)=1 \\
y^{\prime}(t) & =-x(t)-y(t), & y(0)=1 .
\end{aligned}
$$

3. Illustrate that the following orbit always acts as an attracting circular orbit.

$$
\begin{aligned}
& x^{\prime}(t)=x(t)+y(t)-x^{3}(t)-x(t) y^{2}(t) \\
& y^{\prime}(t)=-x(t)+y(t)-x^{2}(t) y(t)-y^{3}(t) .
\end{aligned}
$$

Use at least 5 different starting points, both inside and outside the circle.
4. Do Exercise 15.3 (Orbit generator) in Experiments in Matlab.
5. Use Matlab to show how the van der Pol oscillator

$$
\begin{aligned}
x^{\prime}(t) & =v(t), & x(0) & =2 \\
v^{\prime}(t) & =\mu\left(1-x(t)^{2}\right) v(t)-x(t), & v(0) & =0
\end{aligned}
$$

behaves for the different damping constants $\mu=0.01,0.1,1,10,100$.

