
MATH 590: Meshfree Methods
Chapter 43: RBF-PS Methods in MATLAB

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Fall 2010

fasshauer@iit.edu MATH 590 – Chapter 43 1

http://math.iit.edu/~fass


Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 2

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.
In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.
Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).
We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.

In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.
Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).
We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.
In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.
Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).
We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.
In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.

Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).
We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.
In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.
Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).

We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


The coupling of RBF collocation and pseudospectral methods
discussed in the previous chapter has provided a number of new
insights.

We can apply many standard pseudospectral procedures to RBF
solvers.
In particular, we now have “standard” procedures for solving
time-dependent PDEs with RBFs.

In this chapter we illustrate how the RBF pseudospectral approach can
be applied in a way very similar to standard polynomial pseudospectral
methods.
Among our numerical illustrations are several examples taken from the
book [Trefethen (2000)] (see Programs 17, 35 and 36 there).
We will also use the 1D transport equation from the previous chapter
to compare the RBF and polynomial PS methods.

fasshauer@iit.edu MATH 590 – Chapter 43 3

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 4

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

How to compute the discretized differential operators

In order to compute, for example, a first-order differentiation matrix we
need to remember that — by the chain rule — the derivative of an RBF
will be of the general form

∂

∂x
ϕ(‖x‖) =

x
r

d
dr
ϕ(r).

We require both
the distances, r ,
and differences in x , where x is the first component of x .

In our first MATLAB subroutine DRBF.m we compute these distance
and difference matrices on lines 5 and 6.
The differentiation matrix is then given by (see lines 8–10)

D = AxA−1.

Note the use of the matrix right division operator / or mrdivide in
MATLAB on line 10 used to solve the system DA = Ax for D.

fasshauer@iit.edu MATH 590 – Chapter 43 5

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

How to compute the discretized differential operators

In order to compute, for example, a first-order differentiation matrix we
need to remember that — by the chain rule — the derivative of an RBF
will be of the general form

∂

∂x
ϕ(‖x‖) =

x
r

d
dr
ϕ(r).

We require both
the distances, r ,
and differences in x , where x is the first component of x .

In our first MATLAB subroutine DRBF.m we compute these distance
and difference matrices on lines 5 and 6.
The differentiation matrix is then given by (see lines 8–10)

D = AxA−1.

Note the use of the matrix right division operator / or mrdivide in
MATLAB on line 10 used to solve the system DA = Ax for D.

fasshauer@iit.edu MATH 590 – Chapter 43 5

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

How to compute the discretized differential operators

In order to compute, for example, a first-order differentiation matrix we
need to remember that — by the chain rule — the derivative of an RBF
will be of the general form

∂

∂x
ϕ(‖x‖) =

x
r

d
dr
ϕ(r).

We require both
the distances, r ,
and differences in x , where x is the first component of x .

In our first MATLAB subroutine DRBF.m we compute these distance
and difference matrices on lines 5 and 6.

The differentiation matrix is then given by (see lines 8–10)

D = AxA−1.

Note the use of the matrix right division operator / or mrdivide in
MATLAB on line 10 used to solve the system DA = Ax for D.

fasshauer@iit.edu MATH 590 – Chapter 43 5

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

How to compute the discretized differential operators

In order to compute, for example, a first-order differentiation matrix we
need to remember that — by the chain rule — the derivative of an RBF
will be of the general form

∂

∂x
ϕ(‖x‖) =

x
r

d
dr
ϕ(r).

We require both
the distances, r ,
and differences in x , where x is the first component of x .

In our first MATLAB subroutine DRBF.m we compute these distance
and difference matrices on lines 5 and 6.
The differentiation matrix is then given by (see lines 8–10)

D = AxA−1.

Note the use of the matrix right division operator / or mrdivide in
MATLAB on line 10 used to solve the system DA = Ax for D.

fasshauer@iit.edu MATH 590 – Chapter 43 5

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

How to compute the discretized differential operators

In order to compute, for example, a first-order differentiation matrix we
need to remember that — by the chain rule — the derivative of an RBF
will be of the general form

∂

∂x
ϕ(‖x‖) =

x
r

d
dr
ϕ(r).

We require both
the distances, r ,
and differences in x , where x is the first component of x .

In our first MATLAB subroutine DRBF.m we compute these distance
and difference matrices on lines 5 and 6.
The differentiation matrix is then given by (see lines 8–10)

D = AxA−1.

Note the use of the matrix right division operator / or mrdivide in
MATLAB on line 10 used to solve the system DA = Ax for D.

fasshauer@iit.edu MATH 590 – Chapter 43 5

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Program (DRBF.m)

1 function [D,x] = DRBF(N,rbf,dxrbf)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; x = flipud(x); % Chebyshev pts.
4 mine = .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7a ep=fminbnd(@(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),...
7b mine,maxe);
8 A = rbf(ep,r);
9 Ax = dxrbf(ep,r,dx);

10 D = Ax/A;

Remark
DRBF.m is a little more complicated than it needs to be since we
include an LOOCV-optimization of the RBF shape parameter.
Below we modify the basic routine CostEpsilon.m so that we
optimize ε for the matrix problem D = AxA−1 ⇐⇒ AT DT = (Ax )T .

fasshauer@iit.edu MATH 590 – Chapter 43 6

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Program (DRBF.m)

1 function [D,x] = DRBF(N,rbf,dxrbf)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; x = flipud(x); % Chebyshev pts.
4 mine = .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7a ep=fminbnd(@(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),...
7b mine,maxe);
8 A = rbf(ep,r);
9 Ax = dxrbf(ep,r,dx);

10 D = Ax/A;

Remark
DRBF.m is a little more complicated than it needs to be since we
include an LOOCV-optimization of the RBF shape parameter.

Below we modify the basic routine CostEpsilon.m so that we
optimize ε for the matrix problem D = AxA−1 ⇐⇒ AT DT = (Ax )T .

fasshauer@iit.edu MATH 590 – Chapter 43 6

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Program (DRBF.m)

1 function [D,x] = DRBF(N,rbf,dxrbf)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; x = flipud(x); % Chebyshev pts.
4 mine = .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6 dx = DifferenceMatrix(x,x);
7a ep=fminbnd(@(ep) CostEpsilonDRBF(ep,r,dx,rbf,dxrbf),...
7b mine,maxe);
8 A = rbf(ep,r);
9 Ax = dxrbf(ep,r,dx);

10 D = Ax/A;

Remark
DRBF.m is a little more complicated than it needs to be since we
include an LOOCV-optimization of the RBF shape parameter.
Below we modify the basic routine CostEpsilon.m so that we
optimize ε for the matrix problem D = AxA−1 ⇐⇒ AT DT = (Ax )T .

fasshauer@iit.edu MATH 590 – Chapter 43 6

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Program (CostEpsilonDRBF.m)

1 function ceps = CostEpsilonDRBF(ep,r,dx,rbf,dxrbf)
2 N = size(r,2);
3 A = rbf(ep,r); % = A^T since A is symmetric
4 rhs = dxrbf(ep,r,dx)’; % A_x^T
5 invA = pinv(A);
6 EF = (invA*rhs)./repmat(diag(invA),1,N);
7 ceps = norm(EF(:));

Remark
Note that CostEpsilonDRBF.m is very similar to CostEpsilon.m.
Now, however, we compute a right-hand side matrix corresponding to
the transpose of Ax .
Therefore, the denominator — which remains the same for all
right-hand sides — needs to be cloned on line 6 via the repmat
command.
The cost of ε is now the Frobenius norm of the matrix EF.

fasshauer@iit.edu MATH 590 – Chapter 43 7

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB

Program (CostEpsilonDRBF.m)

1 function ceps = CostEpsilonDRBF(ep,r,dx,rbf,dxrbf)
2 N = size(r,2);
3 A = rbf(ep,r); % = A^T since A is symmetric
4 rhs = dxrbf(ep,r,dx)’; % A_x^T
5 invA = pinv(A);
6 EF = (invA*rhs)./repmat(diag(invA),1,N);
7 ceps = norm(EF(:));

Remark
Note that CostEpsilonDRBF.m is very similar to CostEpsilon.m.
Now, however, we compute a right-hand side matrix corresponding to
the transpose of Ax .
Therefore, the denominator — which remains the same for all
right-hand sides — needs to be cloned on line 6 via the repmat
command.
The cost of ε is now the Frobenius norm of the matrix EF.

fasshauer@iit.edu MATH 590 – Chapter 43 7

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

We illustrate the use of the subroutine DBRF.m by solving a 1-D
transport equation.
Consider

ut (x , t) + cux (x , t) = 0, x > −1, t > 0,
u(−1, t) = 0,
u(x ,0) = f (x),

with the well-known solution

u(x , t) = f (x − ct).

fasshauer@iit.edu MATH 590 – Chapter 43 8

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

Program (TransportDRBF.m)
1 rbf = @(e,r) exp(-(e*r).^2); % Gaussian RBF
2 dxrbf = @(e,r,dx) -2*dx*e^2.*exp(-(e*r).^2);
3 f = @(x) max(64*(-x).^3.*(1+x).^3,0);
4 N = 20; [D,x] = DRBF(N,rbf,dxrbf);
5 dt = 0.001; t = 0; c = 1; v = f(x);
6 tmax = 1; tplot = .02; plotgap = round(tplot/dt);
7 dt = tplot/plotgap; nplots = round(tmax/tplot);
8 data = [v’; zeros(nplots,N+1)]; tdata = t;
9 for i = 1:nplots

10 for n = 1:plotgap
11 t = t+dt;
12 vv = v(end-1);
13 v = v - dt*c*(D*v); % explicit Euler
14 v(1) = 0; v(end) = vv;
15 end
16 data(i+1,:) = v’; tdata = [tdata; t];
17 end
18 surf(x,tdata,data), view(10,70), colormap(’default’);
19 axis([-1 1 0 tmax 0 1]), ylabel t, zlabel u, grid off
20 xx = linspace(-1,1,101); vone = f(xx-c);
21 w = interp1(x,v,xx);
22 maxErr = norm(w-vone,inf)

fasshauer@iit.edu MATH 590 – Chapter 43 9

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

Figure: Time profiles of the solution to the transport equation for 0 ≤ t ≤ 1
with initial profile f (x) = max(−64x3(1 + x)3,0) and unit wave speed based
on Gaussian RBFs with ε = 1.874049 (left) and Chebyshev PS method
(right). Explicit Euler time-stepping with (∆t = 0.001), and 21 Chebyshev
points.

The maximum error for the Gaussian solution at time t = 1 is 0.0416,
while for the PS solution we get 0.0418.

fasshauer@iit.edu MATH 590 – Chapter 43 10

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

Remark
We could use almost the identical code to solve this problem with
a Chebyshev pseudospectral method as discussed in
[Trefethen (2000)].

The only difference in the PS-code is the replacement of line 4 in
TransportDRBF.m by
4 N=20; [D,x] = cheb(N); x = flipud(x); D = -D;

where cheb.m is the subroutine provided on page 54 of
[Trefethen (2000)] for spectral differentiation.

Note that Trefethen’s cheb is based on a “right-to-left” orientation
of the collocation points, and therefore we need to “correct” the
points and matrix D.

fasshauer@iit.edu MATH 590 – Chapter 43 11

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

Remark
We could use almost the identical code to solve this problem with
a Chebyshev pseudospectral method as discussed in
[Trefethen (2000)].

The only difference in the PS-code is the replacement of line 4 in
TransportDRBF.m by
4 N=20; [D,x] = cheb(N); x = flipud(x); D = -D;

where cheb.m is the subroutine provided on page 54 of
[Trefethen (2000)] for spectral differentiation.

Note that Trefethen’s cheb is based on a “right-to-left” orientation
of the collocation points, and therefore we need to “correct” the
points and matrix D.

fasshauer@iit.edu MATH 590 – Chapter 43 11

http://math.iit.edu/~fass


Computing the RBF-Differentiation Matrix in MATLAB Solution of a 1-D Transport Equation

Remark
We could use almost the identical code to solve this problem with
a Chebyshev pseudospectral method as discussed in
[Trefethen (2000)].

The only difference in the PS-code is the replacement of line 4 in
TransportDRBF.m by
4 N=20; [D,x] = cheb(N); x = flipud(x); D = -D;

where cheb.m is the subroutine provided on page 54 of
[Trefethen (2000)] for spectral differentiation.

Note that Trefethen’s cheb is based on a “right-to-left” orientation
of the collocation points, and therefore we need to “correct” the
points and matrix D.

fasshauer@iit.edu MATH 590 – Chapter 43 11

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 12

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

We now explain how the Contour-Padé algorithm of
[Fornberg and Wright (2004)] can be used to compute RBF
differentiation matrices.

In its original form the Contour-Padé algorithm allows us to stably
evaluate RBF interpolants based on infinitely smooth RBFs for
extreme choices of the shape parameter ε (in particular ε→ 0).

The Contour-Padé algorithm uses FFTs and Padé approximations to
evaluate the function

û(x , ε) = bT (x , ε)(A(ε))−1f (1)

with b(x , ε)j = ϕε(‖x − x j‖) at some evaluation point x and
A(ε)i,j = ϕε(‖x i − x j‖).

fasshauer@iit.edu MATH 590 – Chapter 43 13

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

We now explain how the Contour-Padé algorithm of
[Fornberg and Wright (2004)] can be used to compute RBF
differentiation matrices.

In its original form the Contour-Padé algorithm allows us to stably
evaluate RBF interpolants based on infinitely smooth RBFs for
extreme choices of the shape parameter ε (in particular ε→ 0).

The Contour-Padé algorithm uses FFTs and Padé approximations to
evaluate the function

û(x , ε) = bT (x , ε)(A(ε))−1f (1)

with b(x , ε)j = ϕε(‖x − x j‖) at some evaluation point x and
A(ε)i,j = ϕε(‖x i − x j‖).

fasshauer@iit.edu MATH 590 – Chapter 43 13

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

We now explain how the Contour-Padé algorithm of
[Fornberg and Wright (2004)] can be used to compute RBF
differentiation matrices.

In its original form the Contour-Padé algorithm allows us to stably
evaluate RBF interpolants based on infinitely smooth RBFs for
extreme choices of the shape parameter ε (in particular ε→ 0).

The Contour-Padé algorithm uses FFTs and Padé approximations to
evaluate the function

û(x , ε) = bT (x , ε)(A(ε))−1f (1)

with b(x , ε)j = ϕε(‖x − x j‖) at some evaluation point x and
A(ε)i,j = ϕε(‖x i − x j‖).

fasshauer@iit.edu MATH 590 – Chapter 43 13

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

If we evaluate û at all of the collocation points x i , i = 1, . . . ,N, for
some fixed value of ε, then bT (x , ε) turns into the matrix A(ε).

In the case of interpolation this is pointless.
If the Contour-Padé algorithm is adapted to replace the vector
bT (x , ε) (corresponding to evaluation at a single point x) with the
matrix AL based on the differential operator (corresponding to
evaluation at all collocation points), then

AL(ε)(A(ε))−1u

computes the values of the (spatial) derivative of u on the
collocation points x i .
Boundary conditions can be incorporated later as in the standard
PS approach (see, e.g., [Trefethen (2000)] or Chapter 42).

fasshauer@iit.edu MATH 590 – Chapter 43 14

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

If we evaluate û at all of the collocation points x i , i = 1, . . . ,N, for
some fixed value of ε, then bT (x , ε) turns into the matrix A(ε).
In the case of interpolation this is pointless.

If the Contour-Padé algorithm is adapted to replace the vector
bT (x , ε) (corresponding to evaluation at a single point x) with the
matrix AL based on the differential operator (corresponding to
evaluation at all collocation points), then

AL(ε)(A(ε))−1u

computes the values of the (spatial) derivative of u on the
collocation points x i .
Boundary conditions can be incorporated later as in the standard
PS approach (see, e.g., [Trefethen (2000)] or Chapter 42).

fasshauer@iit.edu MATH 590 – Chapter 43 14

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

If we evaluate û at all of the collocation points x i , i = 1, . . . ,N, for
some fixed value of ε, then bT (x , ε) turns into the matrix A(ε).
In the case of interpolation this is pointless.
If the Contour-Padé algorithm is adapted to replace the vector
bT (x , ε) (corresponding to evaluation at a single point x) with the
matrix AL based on the differential operator (corresponding to
evaluation at all collocation points), then

AL(ε)(A(ε))−1u

computes the values of the (spatial) derivative of u on the
collocation points x i .

Boundary conditions can be incorporated later as in the standard
PS approach (see, e.g., [Trefethen (2000)] or Chapter 42).

fasshauer@iit.edu MATH 590 – Chapter 43 14

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach

If we evaluate û at all of the collocation points x i , i = 1, . . . ,N, for
some fixed value of ε, then bT (x , ε) turns into the matrix A(ε).
In the case of interpolation this is pointless.
If the Contour-Padé algorithm is adapted to replace the vector
bT (x , ε) (corresponding to evaluation at a single point x) with the
matrix AL based on the differential operator (corresponding to
evaluation at all collocation points), then

AL(ε)(A(ε))−1u

computes the values of the (spatial) derivative of u on the
collocation points x i .
Boundary conditions can be incorporated later as in the standard
PS approach (see, e.g., [Trefethen (2000)] or Chapter 42).

fasshauer@iit.edu MATH 590 – Chapter 43 14

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.

We compare
a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.
For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.
Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.
We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.
We compare

a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.
For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.
Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.
We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.
We compare

a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.

For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.
Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.
We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.
We compare

a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.
For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.

Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.
We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.
We compare

a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.
For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.
Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.

We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

This means that we can add another subroutine to compute the
differentiation matrix on line 4 of TransportDRBF.m via the
Contour-Padé algorithm.
We compare

a solution based on the Contour-Padé algorithm for Gaussian RBFs
in the limiting case ε→ 0
to the two methods described earlier (based on DRBF and cheb).

All methods use an implicit Euler method with time step
∆t = 0.001 for the time discretization.
For an implicit time-stepping method both the Contour-Padé
approach and the DRBF approach require an inversion of the
differentiation matrix.
Recall that our theoretical discussion suggested that this is
justified as long as we’re in the limiting case ε→ 0 and one space
dimension.
We will see that the non-limiting case (using DRBF) seems to work
just as well.

fasshauer@iit.edu MATH 590 – Chapter 43 15

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

6 8 10 12 14 16 18
10

−2

10
−1

10
0

N

E
rr

or

6 8 10 12 14 16 18
10

−2

10
−1

10
0

N

E
rr

or

6 8 10 12 14 16 18
10

−2

10
−1

10
0

N

E
rr

or

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N

O
pt

im
al

 e
ps

ilo
n

Figure: Errors at t = 1 for transport equation. Top: Gaussian RBF with ε = 0
(left) and Chebyshev PS-solution (right). Bottom: Gaussian RBF with
“optimal” ε (left) and corresponding ε-values (right). Variable spatial
discretization N. Implicit Euler method with ∆t = 0.001.

fasshauer@iit.edu MATH 590 – Chapter 43 16

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The “optimal” ε ranges almost linearly increasing from 0.122661 at
N = 6 to 1.566594 at N = 18.

We can see that the errors for all three methods are virtually
identical.

Unfortunately, in this experiment we are limited to this small range
of N since for N ≥ 19 the Contour-Padé solution becomes
unreliable.

The remarkable agreement of all three solutions for these small
values of N seems to indicate that the errors in the solution are
mostly due to the time-stepping method used.

fasshauer@iit.edu MATH 590 – Chapter 43 17

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The “optimal” ε ranges almost linearly increasing from 0.122661 at
N = 6 to 1.566594 at N = 18.

We can see that the errors for all three methods are virtually
identical.

Unfortunately, in this experiment we are limited to this small range
of N since for N ≥ 19 the Contour-Padé solution becomes
unreliable.

The remarkable agreement of all three solutions for these small
values of N seems to indicate that the errors in the solution are
mostly due to the time-stepping method used.

fasshauer@iit.edu MATH 590 – Chapter 43 17

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The “optimal” ε ranges almost linearly increasing from 0.122661 at
N = 6 to 1.566594 at N = 18.

We can see that the errors for all three methods are virtually
identical.

Unfortunately, in this experiment we are limited to this small range
of N since for N ≥ 19 the Contour-Padé solution becomes
unreliable.

The remarkable agreement of all three solutions for these small
values of N seems to indicate that the errors in the solution are
mostly due to the time-stepping method used.

fasshauer@iit.edu MATH 590 – Chapter 43 17

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The “optimal” ε ranges almost linearly increasing from 0.122661 at
N = 6 to 1.566594 at N = 18.

We can see that the errors for all three methods are virtually
identical.

Unfortunately, in this experiment we are limited to this small range
of N since for N ≥ 19 the Contour-Padé solution becomes
unreliable.

The remarkable agreement of all three solutions for these small
values of N seems to indicate that the errors in the solution are
mostly due to the time-stepping method used.

fasshauer@iit.edu MATH 590 – Chapter 43 17

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

−3 −2 −1 0 1 2 3

x 10
−3

−2

−1

0

1

2

x 10
−3

Re

Im

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Re

Im

−2 −1 0 1 2

−2

−1

0

1

2

Re

Im

−5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

Re

Im

Figure: Spectra of differentiation matrices for Gaussian RBF with ε = 0 on
Chebyshev collocation points obtained with the Contour-Padé algorithm and
N = 5,9,13,17.

fasshauer@iit.edu MATH 590 – Chapter 43 18

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

−2 −1 0 1 2

x 10
−3

−2

−1

0

1

2

x 10
−3

Re

Im

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Re

Im

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re

Im

Figure: Spectra of differentiation matrices for Chebyshev pseudospectral
method on Chebyshev collocation points with N = 5,9,13,17.

fasshauer@iit.edu MATH 590 – Chapter 43 19

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The plots for the Gaussian and Chebyshev methods show some
similarities, but also some differences.

The general distribution of the eigenvalues for the two methods is
quite similar.

The spectra for the Contour-Padé algorithm with Gaussian RBFs
seem to be more or less a slightly stretched reflection about the
imaginary axis of the spectra of the Chebyshev pseudospectral
method.

The differences increase as N increases.

This is not surprising since the Contour-Padé algorithm is known
to be unreliable for larger values of N.

fasshauer@iit.edu MATH 590 – Chapter 43 20

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The plots for the Gaussian and Chebyshev methods show some
similarities, but also some differences.

The general distribution of the eigenvalues for the two methods is
quite similar.

The spectra for the Contour-Padé algorithm with Gaussian RBFs
seem to be more or less a slightly stretched reflection about the
imaginary axis of the spectra of the Chebyshev pseudospectral
method.

The differences increase as N increases.

This is not surprising since the Contour-Padé algorithm is known
to be unreliable for larger values of N.

fasshauer@iit.edu MATH 590 – Chapter 43 20

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The plots for the Gaussian and Chebyshev methods show some
similarities, but also some differences.

The general distribution of the eigenvalues for the two methods is
quite similar.

The spectra for the Contour-Padé algorithm with Gaussian RBFs
seem to be more or less a slightly stretched reflection about the
imaginary axis of the spectra of the Chebyshev pseudospectral
method.

The differences increase as N increases.

This is not surprising since the Contour-Padé algorithm is known
to be unreliable for larger values of N.

fasshauer@iit.edu MATH 590 – Chapter 43 20

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The plots for the Gaussian and Chebyshev methods show some
similarities, but also some differences.

The general distribution of the eigenvalues for the two methods is
quite similar.

The spectra for the Contour-Padé algorithm with Gaussian RBFs
seem to be more or less a slightly stretched reflection about the
imaginary axis of the spectra of the Chebyshev pseudospectral
method.

The differences increase as N increases.

This is not surprising since the Contour-Padé algorithm is known
to be unreliable for larger values of N.

fasshauer@iit.edu MATH 590 – Chapter 43 20

http://math.iit.edu/~fass


Use of the Contour-Padé Algorithm with the PS Approach Solution of the 1D Transport Equation Revisited

Remark
The plots for the Gaussian and Chebyshev methods show some
similarities, but also some differences.

The general distribution of the eigenvalues for the two methods is
quite similar.

The spectra for the Contour-Padé algorithm with Gaussian RBFs
seem to be more or less a slightly stretched reflection about the
imaginary axis of the spectra of the Chebyshev pseudospectral
method.

The differences increase as N increases.

This is not surprising since the Contour-Padé algorithm is known
to be unreliable for larger values of N.

fasshauer@iit.edu MATH 590 – Chapter 43 20

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 21

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

For polynomial differentiation matrices higher-order derivatives can be
computed by repeatedly applying the first-order differentiation matrix,
i.e.,

D(k) = Dk ,

where D is the standard first-order differentiation matrix and D(k) is the
matrix corresponding to the k -th (univariate) derivative.

Unfortunately, this does not carry over to the general RBF case (just as
is does not hold for periodic Fourier spectral differentiation matrices,
either).

We therefore need to provide separate MATLAB code for higher-order
differentiation matrices.

fasshauer@iit.edu MATH 590 – Chapter 43 22

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

For polynomial differentiation matrices higher-order derivatives can be
computed by repeatedly applying the first-order differentiation matrix,
i.e.,

D(k) = Dk ,

where D is the standard first-order differentiation matrix and D(k) is the
matrix corresponding to the k -th (univariate) derivative.

Unfortunately, this does not carry over to the general RBF case (just as
is does not hold for periodic Fourier spectral differentiation matrices,
either).

We therefore need to provide separate MATLAB code for higher-order
differentiation matrices.

fasshauer@iit.edu MATH 590 – Chapter 43 22

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

For polynomial differentiation matrices higher-order derivatives can be
computed by repeatedly applying the first-order differentiation matrix,
i.e.,

D(k) = Dk ,

where D is the standard first-order differentiation matrix and D(k) is the
matrix corresponding to the k -th (univariate) derivative.

Unfortunately, this does not carry over to the general RBF case (just as
is does not hold for periodic Fourier spectral differentiation matrices,
either).

We therefore need to provide separate MATLAB code for higher-order
differentiation matrices.

fasshauer@iit.edu MATH 590 – Chapter 43 22

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

Program (D2RBF.m)

1 function [D2,x] = D2RBF(N,rbf,d2rbf)
2 if N==0, D2=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 mine = .1; maxe = 10; % Shape parameter interval
5 r = DistanceMatrix(x,x);
6a ep=fminbnd(@(ep) CostEpsilonD2RBF(ep,r,rbf,d2rbf),...
6b mine,maxe);
7 A = rbf(ep,r);
8 AD2 = d2rbf(ep,r);
9 D2 = AD2/A;

The only new thing that is needed for D2RBFS is the appropriate
formula for the derivative of the RBF passed to D2RBF via the
parameter d2rbf.

fasshauer@iit.edu MATH 590 – Chapter 43 23

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

Remark
We do not list CostEpsilonD2RBF.

It differs from CostEpsilonDRBF only in the definition of the
right-hand side matrix which now becomes
4 rhs = d2rbf(ep,r)’;

Also, the number and type of parameters that are passed to the
functions are different since the first-order derivative requires
differences of collocation points and the second-order derivative
does not.

fasshauer@iit.edu MATH 590 – Chapter 43 24

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

Remark
We do not list CostEpsilonD2RBF.

It differs from CostEpsilonDRBF only in the definition of the
right-hand side matrix which now becomes
4 rhs = d2rbf(ep,r)’;

Also, the number and type of parameters that are passed to the
functions are different since the first-order derivative requires
differences of collocation points and the second-order derivative
does not.

fasshauer@iit.edu MATH 590 – Chapter 43 24

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives

Remark
We do not list CostEpsilonD2RBF.

It differs from CostEpsilonDRBF only in the definition of the
right-hand side matrix which now becomes
4 rhs = d2rbf(ep,r)’;

Also, the number and type of parameters that are passed to the
functions are different since the first-order derivative requires
differences of collocation points and the second-order derivative
does not.

fasshauer@iit.edu MATH 590 – Chapter 43 24

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

We illustrate the use of the subroutine D2RBF.m with a modification of
Program 35 in [Trefethen (2000)] which is concerned with the solution
of the nonlinear reaction-diffusion (or Allen-Cahn) equation.

Consider
ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1
u(1, t) = sin2(t/5).

The solution has three steady states (u = −1,0,1) with the two
nonzero states being stable.
The transition between these states is governed by the parameter µ.
Below we use µ = 0.01, and the unstable state should vanish around
t = 30.

fasshauer@iit.edu MATH 590 – Chapter 43 25

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

We illustrate the use of the subroutine D2RBF.m with a modification of
Program 35 in [Trefethen (2000)] which is concerned with the solution
of the nonlinear reaction-diffusion (or Allen-Cahn) equation.
Consider

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1
u(1, t) = sin2(t/5).

The solution has three steady states (u = −1,0,1) with the two
nonzero states being stable.
The transition between these states is governed by the parameter µ.
Below we use µ = 0.01, and the unstable state should vanish around
t = 30.

fasshauer@iit.edu MATH 590 – Chapter 43 25

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

We illustrate the use of the subroutine D2RBF.m with a modification of
Program 35 in [Trefethen (2000)] which is concerned with the solution
of the nonlinear reaction-diffusion (or Allen-Cahn) equation.
Consider

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1
u(1, t) = sin2(t/5).

The solution has three steady states (u = −1,0,1) with the two
nonzero states being stable.

The transition between these states is governed by the parameter µ.
Below we use µ = 0.01, and the unstable state should vanish around
t = 30.

fasshauer@iit.edu MATH 590 – Chapter 43 25

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

We illustrate the use of the subroutine D2RBF.m with a modification of
Program 35 in [Trefethen (2000)] which is concerned with the solution
of the nonlinear reaction-diffusion (or Allen-Cahn) equation.
Consider

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1
u(1, t) = sin2(t/5).

The solution has three steady states (u = −1,0,1) with the two
nonzero states being stable.
The transition between these states is governed by the parameter µ.

Below we use µ = 0.01, and the unstable state should vanish around
t = 30.

fasshauer@iit.edu MATH 590 – Chapter 43 25

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

We illustrate the use of the subroutine D2RBF.m with a modification of
Program 35 in [Trefethen (2000)] which is concerned with the solution
of the nonlinear reaction-diffusion (or Allen-Cahn) equation.
Consider

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1
u(1, t) = sin2(t/5).

The solution has three steady states (u = −1,0,1) with the two
nonzero states being stable.
The transition between these states is governed by the parameter µ.
Below we use µ = 0.01, and the unstable state should vanish around
t = 30.

fasshauer@iit.edu MATH 590 – Chapter 43 25

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Program (Modification of Program 35 of [Trefethen (2000)])
1 rbf = @(e,r) exp(-e*r).*(15+15*e*r+6*(e*r).^2+(e*r).^3);
2 d2rbf = @(e,r) e^2*((e*r).^3-3*e*r-3).*exp(-e*r);
3 N = 20; [D2,x] = D2RBF(N,rbf,d2rbf);

% Here is the rest of Trefethen’s code.
4 mu = 0.01; dt = min([.01,50*N^(-4)/mu]);
5 t = 0; v = .53*x + .47*sin(-1.5*pi*x);
6 tmax = 100; tplot = 2; nplots = round(tmax/tplot);
7 plotgap = round(tplot/dt); dt = tplot/plotgap;
8 xx = -1:.025:1; vv = polyval(polyfit(x,v,N),xx);
9 plotdata = [vv; zeros(nplots,length(xx))]; tdata = t;

10 for i = 1:nplots
11 for n = 1:plotgap
12 t = t+dt; v = v + dt*(mu*D2*v + v - v.^3); % Euler
13 v(1) = 1 + sin(t/5)^2; v(end) = -1; % BC
14 end
15 vv = polyval(polyfit(x,v,N),xx);
16 plotdata(i+1,:) = vv; tdata = [tdata; t];
17 end
18 surf(xx,tdata,plotdata), grid on
19 axis([-1 1 0 tmax -1 2]), view(-40,55)
20 colormap(’default’); xlabel x, ylabel t, zlabel u

fasshauer@iit.edu MATH 590 – Chapter 43 26

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.

The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.
In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.
Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.
We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).
In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.
The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.

In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.
Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.
We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).
In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.
The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.
In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.

Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.
We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).
In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.
The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.
In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.
Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.

We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).
In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.
The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.
In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.
Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.
We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).

In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
Note how easily the nonlinearity is dealt with by incorporating it
into the time-stepping method on line 12.
The original program in [Trefethen (2000)] is obtained by deleting
lines 1–2 and replacing line 3 by a call to cheb.m followed by the
statement D2 = D^2.
In our RBF-PS implementation the majority of the matrix
computations are required only once outside the time-stepping
procedure when computing the derivative matrix.
Inside the time-stepping loop (on line 12) we require only
matrix-vector multiplication.
We point out that this approach is much more efficient than
computation of RBF expansion coefficients at every time step (as
suggested, e.g., in [Hon and Mao (1999)]).
In fact, this is the main difference between the RBF-PS approach
and the collocation approach of Chapters 38–40.

fasshauer@iit.edu MATH 590 – Chapter 43 27

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Figure: Solution of the Allen-Cahn equation using the Chebyshev PS-method
(left) and an RBF-PS method with cubic Matérn functions
ϕ(r) = (15 + 15εr + 6(εr)2 + (εr)3)e−εr with “optimal” shape parameter
ε = 0.350952 (right) with N = 20.

fasshauer@iit.edu MATH 590 – Chapter 43 28

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
We can see that the solution based on Chebyshev polynomials
appears to be slightly more accurate since the transition occurs at
a slightly later and correct time (i.e., at t ≈ 30) and is also a little
“sharper”.

The differentiation matrix RBF is obtained directly with D2RBF.m
(i.e., without the Contour-Padé algorithm – since that method is
not reliable for 21 points).

The plots show that reasonable solutions can also be obtained via
this direct (and much simpler) RBF approach.

True spectral accuracy will no longer be given if ε > 0.

fasshauer@iit.edu MATH 590 – Chapter 43 29

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
We can see that the solution based on Chebyshev polynomials
appears to be slightly more accurate since the transition occurs at
a slightly later and correct time (i.e., at t ≈ 30) and is also a little
“sharper”.

The differentiation matrix RBF is obtained directly with D2RBF.m
(i.e., without the Contour-Padé algorithm – since that method is
not reliable for 21 points).

The plots show that reasonable solutions can also be obtained via
this direct (and much simpler) RBF approach.

True spectral accuracy will no longer be given if ε > 0.

fasshauer@iit.edu MATH 590 – Chapter 43 29

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
We can see that the solution based on Chebyshev polynomials
appears to be slightly more accurate since the transition occurs at
a slightly later and correct time (i.e., at t ≈ 30) and is also a little
“sharper”.

The differentiation matrix RBF is obtained directly with D2RBF.m
(i.e., without the Contour-Padé algorithm – since that method is
not reliable for 21 points).

The plots show that reasonable solutions can also be obtained via
this direct (and much simpler) RBF approach.

True spectral accuracy will no longer be given if ε > 0.

fasshauer@iit.edu MATH 590 – Chapter 43 29

http://math.iit.edu/~fass


Computation of Higher-Order Derivatives Solution of the Allen-Cahn Equation

Remark
We can see that the solution based on Chebyshev polynomials
appears to be slightly more accurate since the transition occurs at
a slightly later and correct time (i.e., at t ≈ 30) and is also a little
“sharper”.

The differentiation matrix RBF is obtained directly with D2RBF.m
(i.e., without the Contour-Padé algorithm – since that method is
not reliable for 21 points).

The plots show that reasonable solutions can also be obtained via
this direct (and much simpler) RBF approach.

True spectral accuracy will no longer be given if ε > 0.

fasshauer@iit.edu MATH 590 – Chapter 43 29

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 30

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Consider the 2D Helmholtz equation (see Program 17 in
[Trefethen (2000)])

uxx + uyy + k2u = f (x , y), x , y ∈ (−1,1)2,

with boundary condition
u = 0

and exact solution

f (x , y) = exp
(
−10

[
(y − 1)2 + (x − 1

2
)2
])

.

fasshauer@iit.edu MATH 590 – Chapter 43 31

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Consider the 2D Helmholtz equation (see Program 17 in
[Trefethen (2000)])

uxx + uyy + k2u = f (x , y), x , y ∈ (−1,1)2,

with boundary condition
u = 0

and exact solution

f (x , y) = exp
(
−10

[
(y − 1)2 + (x − 1

2
)2
])

.

fasshauer@iit.edu MATH 590 – Chapter 43 31

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Remark
To solve this type of (elliptic) problem we need to assume
invertibility of the differentiation matrix (even though this may be
theoretically questionable).

We compare
a non-symmetric RBF pseudospectral method
with a Chebyshev pseudospectral method.

We attempt to solve the problem with radial basis functions in two
different ways.

fasshauer@iit.edu MATH 590 – Chapter 43 32

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Remark
To solve this type of (elliptic) problem we need to assume
invertibility of the differentiation matrix (even though this may be
theoretically questionable).

We compare
a non-symmetric RBF pseudospectral method
with a Chebyshev pseudospectral method.

We attempt to solve the problem with radial basis functions in two
different ways.

fasshauer@iit.edu MATH 590 – Chapter 43 32

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Remark
To solve this type of (elliptic) problem we need to assume
invertibility of the differentiation matrix (even though this may be
theoretically questionable).

We compare
a non-symmetric RBF pseudospectral method
with a Chebyshev pseudospectral method.

We attempt to solve the problem with radial basis functions in two
different ways.

fasshauer@iit.edu MATH 590 – Chapter 43 32

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 1:
We apply the same tensor-product technique as in [Trefethen (2000)]
using the kron function to express the disretized Laplacian on a
tensor-product grid of (N + 1)× (N + 1) points as

L = I⊗ D2 + D2⊗ I, (2)

where
D2: is the (univariate) second-order differentiation matrix,

I: is an identity matrix of size (N + 1)× (N + 1), and
⊗: denotes the Kronecker tensor-product.

For polynomial PS methods we have D2 = D2.
For RBFs D2 6= D(2), and we generate D2 with D2RBF.
However, as long as we use tensor-product collocation points and
the RBF is separable (such as a Gaussian or a polynomial), we
can still use the Kronecker tensor-product construction (2).

fasshauer@iit.edu MATH 590 – Chapter 43 33

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 1:
We apply the same tensor-product technique as in [Trefethen (2000)]
using the kron function to express the disretized Laplacian on a
tensor-product grid of (N + 1)× (N + 1) points as

L = I⊗ D2 + D2⊗ I, (2)

where
D2: is the (univariate) second-order differentiation matrix,

I: is an identity matrix of size (N + 1)× (N + 1), and
⊗: denotes the Kronecker tensor-product.

For polynomial PS methods we have D2 = D2.

For RBFs D2 6= D(2), and we generate D2 with D2RBF.
However, as long as we use tensor-product collocation points and
the RBF is separable (such as a Gaussian or a polynomial), we
can still use the Kronecker tensor-product construction (2).

fasshauer@iit.edu MATH 590 – Chapter 43 33

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 1:
We apply the same tensor-product technique as in [Trefethen (2000)]
using the kron function to express the disretized Laplacian on a
tensor-product grid of (N + 1)× (N + 1) points as

L = I⊗ D2 + D2⊗ I, (2)

where
D2: is the (univariate) second-order differentiation matrix,

I: is an identity matrix of size (N + 1)× (N + 1), and
⊗: denotes the Kronecker tensor-product.

For polynomial PS methods we have D2 = D2.
For RBFs D2 6= D(2), and we generate D2 with D2RBF.

However, as long as we use tensor-product collocation points and
the RBF is separable (such as a Gaussian or a polynomial), we
can still use the Kronecker tensor-product construction (2).

fasshauer@iit.edu MATH 590 – Chapter 43 33

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 1:
We apply the same tensor-product technique as in [Trefethen (2000)]
using the kron function to express the disretized Laplacian on a
tensor-product grid of (N + 1)× (N + 1) points as

L = I⊗ D2 + D2⊗ I, (2)

where
D2: is the (univariate) second-order differentiation matrix,

I: is an identity matrix of size (N + 1)× (N + 1), and
⊗: denotes the Kronecker tensor-product.

For polynomial PS methods we have D2 = D2.
For RBFs D2 6= D(2), and we generate D2 with D2RBF.
However, as long as we use tensor-product collocation points and
the RBF is separable (such as a Gaussian or a polynomial), we
can still use the Kronecker tensor-product construction (2).

fasshauer@iit.edu MATH 590 – Chapter 43 33

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Program (Modification of Program 17 of [Trefethen (2000)])
1 rbf = @(e,r) exp(-(e*r).^2);
2 d2rbf = @(e,r) 2*e^2*(2*(e*r).^2-1).*exp(-(e*r).^2);
3 N = 24; [D2,x] = D2RBF(N,rbf,d2rbf); y = x;
4 [xx,yy] = meshgrid(x,y); xx = xx(:); yy = yy(:);
5 I = eye(N+1);
6 k = 9;
7 L = kron(I,D2) + kron(D2,I) + k^2*eye((N+1)^2);
8 b = find(abs(xx)==1 | abs(yy)==1); % boundary pts
9 L(b,:) = zeros(4*N,(N+1)^2); L(b,b) = eye(4*N);

10 f = exp(-10*((yy-1).^2+(xx-.5).^2));
11 f(b) = zeros(4*N,1);
12 u = L\f;
13 uu = reshape(u,N+1,N+1);
14 [xx,yy] = meshgrid(x,y);
15 [xxx,yyy] = meshgrid(-1:.0333:1,-1:.0333:1);
16 uuu = interp2(xx,yy,uu,xxx,yyy,’cubic’);
17 figure, clf, surf(xxx,yyy,uuu),
18 xlabel x, ylabel y, zlabel u
19 text(.2,1,.022,sprintf(’u(0,0)=%13.11f’,uu(N/2+1,N/2+1)))

fasshauer@iit.edu MATH 590 – Chapter 43 34

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Figure: Solution of the 2D Helmholtz equation with N = 24 using the
Chebyshev pseudospectral method (left) and Gaussians with ε = 2.549845
(right).

fasshauer@iit.edu MATH 590 – Chapter 43 35

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.

We use a direct implementation of the Laplacian of the RBFs.
The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.
This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.
Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.
However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.
We use a direct implementation of the Laplacian of the RBFs.

The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.
This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.
Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.
However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.
We use a direct implementation of the Laplacian of the RBFs.
The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.

This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.
Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.
However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.
We use a direct implementation of the Laplacian of the RBFs.
The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.
This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.

Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.
However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.
We use a direct implementation of the Laplacian of the RBFs.
The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.
This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.
Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.

However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Approach 2:
This approach allows the use of non-tensor product collocation
grids.
We use a direct implementation of the Laplacian of the RBFs.
The only advantage of doing this on a tensor-product grid is that
now all RBFs can be used.
This approach takes considerably longer to execute since the
differentiation matrix is now computed with matrices of size
625× 625 instead of the 25× 25 univariate differentiation matrix
D2 used before.
Moreover, the results are likely to be less accurate since the larger
matrices are more prone to ill-conditioning.
However, the advantage of this approach is that it frees us of the
limitation of polynomial PS methods to tensor-product collocation
grids.

fasshauer@iit.edu MATH 590 – Chapter 43 36

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Program (Modification II of Program 17 of [Trefethen (2000)])
1 rbf=@(e,r) max(1-e*r,0).^8.*(32*(e*r).^3+25*(e*r).^2+8*e*r+1);
2a Lrbf = @(e,r) 44*e^2*max(1-e*r,0).^6.*...
2b (88*(e*r).^3+3*(e*r).^2-6*e*r-1);
3 N = 24; [L,x,y] = LRBF(N,rbf,Lrbf);
4 [xx,yy] = meshgrid(x,y);
5 xx = xx(:); yy = yy(:);
6 k = 9;
7 L = L + k^2*eye((N+1)^2);
8 b = find(abs(xx)==1 | abs(yy)==1); % boundary pts
9 L(b,:) = zeros(4*N,(N+1)^2); L(b,b) = eye(4*N);

10 f = exp(-10*((yy-1).^2+(xx-.5).^2));
11 f(b) = zeros(4*N,1);
12 u = L\f;
13 uu = reshape(u,N+1,N+1);
14 [xx,yy] = meshgrid(x,y);
15 [xxx,yyy] = meshgrid(-1:.0333:1,-1:.0333:1);
16 uuu = interp2(xx,yy,uu,xxx,yyy,’cubic’);
17 figure, clf, surf(xxx,yyy,uuu),
18 xlabel x, ylabel y, zlabel u
19 text(.2,1,.022,sprintf(’u(0,0)=%13.11f’,uu(N/2+1,N/2+1)))

fasshauer@iit.edu MATH 590 – Chapter 43 37

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Program (LRBF.m)
1 function [L,x,y] = LRBF(N,rbf,Lrbf)
2 if N==0, L=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 y = x; [xx,yy] = meshgrid(x,y);

% Stretch 2D grids to 1D vectors and put in one array
5 points = [xx(:) yy(:)];
6 mine = .1; maxe = 10; % Shape parameter interval
7 r = DistanceMatrix(points,points);
8a ep = fminbnd(@(ep) CostEpsilonLRBF(ep,r,rbf,Lrbf),...
8b mine,maxe);
9 fprintf(’Using epsilon = %f\n’, ep)

10 A = rbf(ep,r);
11 AL = Lrbf(ep,r);
12 L = AL/A;

fasshauer@iit.edu MATH 590 – Chapter 43 38

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Figure: Solution of the 2D Helmholtz equation using a direct implementation
of the Laplacian based on ϕ3,3(r) = (1− εr)8

+(32(εr)3 + 25(εr)2 + 8εr + 1)
with ε = 0.129444 on 625 tensor-product Chebyshev points.

Remark
We use compactly supported Wendland functions in “global
mode”.
This explains the definition of the basic function in the MATLAB

code as needed for DistanceMatrix.m in LRBF.m.

fasshauer@iit.edu MATH 590 – Chapter 43 39

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Figure: Solution of the 2D Helmholtz equation using a direct implementation
of the Laplacian based on ϕ3,3(r) = (1− εr)8

+(32(εr)3 + 25(εr)2 + 8εr + 1)
with ε = 0.129444 on 625 tensor-product Chebyshev points.

Remark
We use compactly supported Wendland functions in “global
mode”.

This explains the definition of the basic function in the MATLAB

code as needed for DistanceMatrix.m in LRBF.m.

fasshauer@iit.edu MATH 590 – Chapter 43 39

http://math.iit.edu/~fass


Solution of a 2D Helmholtz Equation

Figure: Solution of the 2D Helmholtz equation using a direct implementation
of the Laplacian based on ϕ3,3(r) = (1− εr)8

+(32(εr)3 + 25(εr)2 + 8εr + 1)
with ε = 0.129444 on 625 tensor-product Chebyshev points.

Remark
We use compactly supported Wendland functions in “global
mode”.
This explains the definition of the basic function in the MATLAB

code as needed for DistanceMatrix.m in LRBF.m.

fasshauer@iit.edu MATH 590 – Chapter 43 39

http://math.iit.edu/~fass


A 2D Laplace Equation with Piecewise Boundary Conditions

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 40

http://math.iit.edu/~fass


A 2D Laplace Equation with Piecewise Boundary Conditions

Consider the 2D Laplace equation (see Program 36 of
[Trefethen (2000)] and earlier examples)

uxx + uyy = 0, x , y ∈ (−1,1)2,

with boundary conditions

u(x , y) =


sin4(πx), y = 1 and −1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

Remark
We don’t list the code since it is too similar to previous examples and
the original code in [Trefethen (2000)].

fasshauer@iit.edu MATH 590 – Chapter 43 41

http://math.iit.edu/~fass


A 2D Laplace Equation with Piecewise Boundary Conditions

Consider the 2D Laplace equation (see Program 36 of
[Trefethen (2000)] and earlier examples)

uxx + uyy = 0, x , y ∈ (−1,1)2,

with boundary conditions

u(x , y) =


sin4(πx), y = 1 and −1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

Remark
We don’t list the code since it is too similar to previous examples and
the original code in [Trefethen (2000)].

fasshauer@iit.edu MATH 590 – Chapter 43 41

http://math.iit.edu/~fass


A 2D Laplace Equation with Piecewise Boundary Conditions

−1
−0.5

0
0.5

1

−1

0

1

0

0.5

1

x

u(0,0) = 0.0495946503

y

u

−1
−0.5

0
0.5

1

−1

0

1

0

0.5

1

x

u(0,0) = 0.0495940466

y

u

Figure: Solution of the 2D Laplace equation using a Chebyshev PS approach
(left) and Gaussian RBFs (right) with ε = 2.549845 on 625 tensor-product
Chebyshev collocation points.

The differentiation matrix for the RBF-PS approach is computed using
the D2RBF and kron construction.

fasshauer@iit.edu MATH 590 – Chapter 43 42

http://math.iit.edu/~fass


A 2D Laplace Equation with Piecewise Boundary Conditions

−1
−0.5

0
0.5

1

−1

0

1

0

0.5

1

x

u(0,0) = 0.0495946503

y

u

−1
−0.5

0
0.5

1

−1

0

1

0

0.5

1

x

u(0,0) = 0.0495940466

y

u

Figure: Solution of the 2D Laplace equation using a Chebyshev PS approach
(left) and Gaussian RBFs (right) with ε = 2.549845 on 625 tensor-product
Chebyshev collocation points.

The differentiation matrix for the RBF-PS approach is computed using
the D2RBF and kron construction.

fasshauer@iit.edu MATH 590 – Chapter 43 42

http://math.iit.edu/~fass


Summary

Outline

1 Computing the RBF-Differentiation Matrix in MATLAB

2 Use of the Contour-Padé Algorithm with the PS Approach

3 Computation of Higher-Order Derivatives

4 Solution of a 2D Helmholtz Equation

5 A 2D Laplace Equation with Piecewise Boundary Conditions

6 Summary

fasshauer@iit.edu MATH 590 – Chapter 43 43

http://math.iit.edu/~fass


Summary

Remark
While there is no advantage in going to arbitrarily spaced irregular
collocation points for any of the problems presented here, there is
nothing that prevents us from doing so for the RBF-PS approach.

A potential advantage of the RBF-PS approach over the standard
polynomial methods is the fact that we are not limited to using
tensor product grids for higher-dimensional spatial discretizations.
More applications of the RBF-PS method can be found in
[Ferreira and Fasshauer (2006), Ferreira and Fasshauer (2007)].
Future challenges include

dealing with larger problems in an efficient and stable way, and
coming up with preconditioning and FFT-type algorithms.

Eigenvalue stability of RBF-PS methods have been reported in
[Platte and Driscoll (2006)].

fasshauer@iit.edu MATH 590 – Chapter 43 44

http://math.iit.edu/~fass


Summary

Remark
While there is no advantage in going to arbitrarily spaced irregular
collocation points for any of the problems presented here, there is
nothing that prevents us from doing so for the RBF-PS approach.
A potential advantage of the RBF-PS approach over the standard
polynomial methods is the fact that we are not limited to using
tensor product grids for higher-dimensional spatial discretizations.

More applications of the RBF-PS method can be found in
[Ferreira and Fasshauer (2006), Ferreira and Fasshauer (2007)].
Future challenges include

dealing with larger problems in an efficient and stable way, and
coming up with preconditioning and FFT-type algorithms.

Eigenvalue stability of RBF-PS methods have been reported in
[Platte and Driscoll (2006)].

fasshauer@iit.edu MATH 590 – Chapter 43 44

http://math.iit.edu/~fass


Summary

Remark
While there is no advantage in going to arbitrarily spaced irregular
collocation points for any of the problems presented here, there is
nothing that prevents us from doing so for the RBF-PS approach.
A potential advantage of the RBF-PS approach over the standard
polynomial methods is the fact that we are not limited to using
tensor product grids for higher-dimensional spatial discretizations.
More applications of the RBF-PS method can be found in
[Ferreira and Fasshauer (2006), Ferreira and Fasshauer (2007)].

Future challenges include
dealing with larger problems in an efficient and stable way, and
coming up with preconditioning and FFT-type algorithms.

Eigenvalue stability of RBF-PS methods have been reported in
[Platte and Driscoll (2006)].

fasshauer@iit.edu MATH 590 – Chapter 43 44

http://math.iit.edu/~fass


Summary

Remark
While there is no advantage in going to arbitrarily spaced irregular
collocation points for any of the problems presented here, there is
nothing that prevents us from doing so for the RBF-PS approach.
A potential advantage of the RBF-PS approach over the standard
polynomial methods is the fact that we are not limited to using
tensor product grids for higher-dimensional spatial discretizations.
More applications of the RBF-PS method can be found in
[Ferreira and Fasshauer (2006), Ferreira and Fasshauer (2007)].
Future challenges include

dealing with larger problems in an efficient and stable way, and
coming up with preconditioning and FFT-type algorithms.

Eigenvalue stability of RBF-PS methods have been reported in
[Platte and Driscoll (2006)].

fasshauer@iit.edu MATH 590 – Chapter 43 44

http://math.iit.edu/~fass


Summary

Remark
While there is no advantage in going to arbitrarily spaced irregular
collocation points for any of the problems presented here, there is
nothing that prevents us from doing so for the RBF-PS approach.
A potential advantage of the RBF-PS approach over the standard
polynomial methods is the fact that we are not limited to using
tensor product grids for higher-dimensional spatial discretizations.
More applications of the RBF-PS method can be found in
[Ferreira and Fasshauer (2006), Ferreira and Fasshauer (2007)].
Future challenges include

dealing with larger problems in an efficient and stable way, and
coming up with preconditioning and FFT-type algorithms.

Eigenvalue stability of RBF-PS methods have been reported in
[Platte and Driscoll (2006)].

fasshauer@iit.edu MATH 590 – Chapter 43 44

http://math.iit.edu/~fass


Appendix References

References I

Buhmann, M. D. (2003).
Radial Basis Functions: Theory and Implementations.
Cambridge University Press.

Fasshauer, G. E. (2007).
Meshfree Approximation Methods with MATLAB.
World Scientific Publishers.

Higham, D. J. and Higham, N. J. (2005).
MATLAB Guide.
SIAM (2nd ed.), Philadelphia.

Iske, A. (2004).
Multiresolution Methods in Scattered Data Modelling.
Lecture Notes in Computational Science and Engineering 37, Springer Verlag
(Berlin).

Trefethen, L. N. (2000).
Spectral Methods in MATLAB.
SIAM (Philadelphia, PA).

fasshauer@iit.edu MATH 590 – Chapter 43 45

http://math.iit.edu/~fass


Appendix References

References II

G. Wahba (1990).
Spline Models for Observational Data.
CBMS-NSF Regional Conference Series in Applied Mathematics 59, SIAM
(Philadelphia).

Wendland, H. (2005a).
Scattered Data Approximation.
Cambridge University Press (Cambridge).

Ferreira, A. J. M. and Fasshauer, G. E. (2006)
Computation of natural frequencies of shear deformable beams and plates by an
RBF-pseudospectral method.
Comput. Meth. Appl. Mech. Engng. 196, 134–146.

Ferreira, A. J. M. and Fasshauer, G. E. (2007)
Analysis of natural frequencies of composite plates by an RBF-pseudospectral
method.
Composite Structures 79, pp. 202–210.

fasshauer@iit.edu MATH 590 – Chapter 43 46

http://math.iit.edu/~fass


Appendix References

References III

Fornberg, B. and Wright, G. (2004).
Stable computation of multiquadric interpolants for all values of the shape
parameter.
Comput. Math. Appl. 47, pp. 497–523.

Hon, Y. C. and Mao, X. Z. (1999).
A radial basis function method for solving options pricing model.
Financial Engineering 8, pp. 31–49.

Platte, R. B. and Driscoll, T. A. (2006).
Eigenvalue stability of radial basis function discretizations for time-dependent
problems.
Comput. Math. Appl. 51 8, pp. 1251–1268.

Rippa, S. (1999).
An algorithm for selecting a good value for the parameter c in radial basis
function interpolation.
Adv. in Comput. Math. 11, pp. 193–210.

fasshauer@iit.edu MATH 590 – Chapter 43 47

http://math.iit.edu/~fass

	Computing the RBF-Differentiation Matrix in Matlab
	Solution of a 1-D Transport Equation

	Use of the Contour-Padé Algorithm with the PS Approach
	Solution of the 1D Transport Equation Revisited

	Computation of Higher-Order Derivatives
	Solution of the Allen-Cahn Equation

	Solution of a 2D Helmholtz Equation
	A 2D Laplace Equation with Piecewise Boundary Conditions
	Summary
	Appendix

